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First commercial products (00s)

company IDQ (random key generation & distribution)

Nature 24/04/2014 "China begins work on super-secure network as
?real-world? trial successfully sends quantum keys and data."



Next step: from components / software to hardware systems

−→

Develop
I proper integration of interacting active components

more than "keep your state" goal of current commercial products
more than the 4 or 5 components in current "quantum chips"

I robustness to disturbances, error correction strategies
(software error correction already exists)

I scalability of physical behavior & of design methods
I improved components towards this goal



Why is the "classical" systems approach insufficient?

I In the quantum model, action and measurement are not separated:
taking measurement = interacting with system = applying action

I Interconnecting quantum systems changes their state space (see later
in this talk)

I Extreme time and physical scales (µseconds, mKelvin noise,...)
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Isolated quantum systems just follow particular
classical dynamics

d
dt x = A x d

dt |ψ〉 = −i H |ψ〉

d
dt x = A(u) x d

dt |ψ〉 = −i H(u) |ψ〉

u control parameter u control parameter

e.g. ball on u-shaped surface e.g. spin in u-electric field



Notation: physicists prefer Greek to Latin...

|ψ〉 ∈ CN denotes a complex vector

〈ψ| = |ψ〉† is its Hermitian transpose (dual space)

〈ψ1|ψ2〉 = 〈ψ1| |ψ2〉 is the Hermitian scalar product



Isolated quantum systems just follow particular
classical dynamics

d
dt |ψ〉 = −i H(u) |ψ〉

State |ψ〉 ∈ CN , 〈ψ|ψ〉 = 1 (complex sphere)
"wave function" or "probability density"

Hamiltonian H hermitian such that iH implies a (complex) rotation.

Caveats:
I Hamiltonian dynamics, not valid if the system interacts (dissipation or

measurement)
I Global phase is “irrelevant”: |ψ〉 ∼ eiφ |ψ〉. Actual system state is on

complex projective space: ρ = |ψ〉〈ψ|.
I open-loop Hamiltonian dynamics cannot stabilize
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Classical systems in interaction evolve on the
cartesian product of individual state spaces

System 1: xa ∈ Sa with orthonormal basis e1a, e2a, . . . , eNa

System 2: xb ∈ Sb with orthonormal basis e1b, e2b, . . . , eNb

Systems 1 & 2 interacting: x ∈ Sa × Sb with orthonormal basis

e1a × 0b , e2a × 0b , . . . , eNa × 0b , 0a × e1b , . . . , 0a × eNb.

⇒ dimension Na + Nb



Quantum systems in interaction evolve on the
tensor product of individual state spaces

System 1: |ψa〉 ∈ Ha with orthonormal basis |1a〉, |2a〉, . . . , |Na〉

System 2: |ψb〉 ∈ Hb with orthonormal basis |1b〉, |2b〉, . . . , |Nb〉

Systems 1 & 2 interacting: |ψ〉 ∈ Ha ⊗Hb with orthonormal basis

|1a〉 ⊗ |1b〉 , |1a〉 ⊗ |2b〉 , . . . , |1a〉 ⊗ |Nb〉 ,
|2a〉 ⊗ |1b〉 , |2a〉 ⊗ |2b〉 , . . . , |2a〉 ⊗ |Nb〉 ,
. . .

|Na〉 ⊗ |1b〉 , |Na〉 ⊗ |2b〉 , . . . , |Na〉 ⊗ |Nb〉 .

⇒ dimension Na ∗ Nb



The dynamics of interaction is richer for quantum
systems than for classical systems

N interacting D-dimensional systems

classical: cartesian product state D ∗ N

quantum: tensor product state DN

joint probability: f (x1, x2, ...) is also DN - dimensional

⇒ Quantum systems "are probabilistic"... and a bit more:



The dynamics of interaction is richer for quantum
systems than for classical systems

N interacting D-dimensional systems

classical: cartesian product state D ∗ N

quantum: tensor product state DN

joint probability: f (x1, x2, ...) is also DN - dimensional

⇒ Quantum systems "are probabilistic"... and a bit more:

States |ψ〉 that cannot be written |ψ〉 = |ψa〉 ⊗ |ψb〉 are entangled.
I Bell state 1√

2
( |0a〉|0b〉+ |1a〉|1b〉 ) = 1√

2
( |x+a〉|x+b〉+ |x−a〉|x−b〉 )

e.g. where |x+〉 = 1√
2

(|0〉+ |1〉) and |x−〉 = 1√
2

(|0〉 − |1〉)

I Schrödinger cat 1√
2

(|dead〉|photon shot〉+ |alive〉|photon not shot〉)
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Act 1: (Strong) interaction with a classical system
leads to stochastic projective measurement

Measurement operator

Hermitian matrix Q =
∑

k λk Pk

λk eigenvalues, Pk projector on eigenspace

Measurement result

output y = λk with probability pk (Q) = |〈ψ|Pk |ψ〉|
state |ψ〉 → Pk |ψ〉 / ‖Pk |ψ〉‖

matrices do not commute⇒ Heisenberg uncertainty principle
Qposition eigenvectors = Fourier transform of Qmomentum eigenvectors



Act 2: Mixed interaction yields
“weak measurement” and control

|ψ(t)〉 ⊗ |0〉 state ⊗ “actuator”

CN C2

↓ Hinteraction on C2N

α0(ψ)|ξ0(ψ)〉 ⊗ |0〉 + α1(ψ)|ξ1(ψ)〉 ⊗ |1〉 entangled state

↓ Qactuator = I ⊗ (λ0|0〉〈0|+ λ1|1〉〈1|)

|ψ(t + 1)〉 = |ξ0(ψ)〉 , y(t) = λ0 with probability |α0(ψ)|2

|ψ(t + 1)〉 = |ξ1(ψ)〉 , y(t) = λ1 with probability |α1(ψ)|2

"weak": |ξ0(ψ)〉, |ξ1(ψ)〉 may be just slight modifications of |ψ(t)〉



Control by interaction allows asymptotic stabilization
and feedback

Isolated quantum system

ψ(T ) = U(T ) |ψ(0)〉 with U(t) unitary

⇒ different |ψ(0)〉 cannot converge to each other

New possibility with controlled interaction

Measurement operation induces non-unitary evolution

⇒ can make different initial conditions converge to target

Measurement result informs on system state⇒ allows feedback.



Act 3: Quantum systems are very fragile to interaction
with the environment

Interaction with a “measuring environment” induces system jumps

t = 0 |ψSyst.〉 ⊗ |ψEnv.〉 system ⊗ “environment”

↓ Hinteraction on HSyst ⊗HEnv.

t = dt−
∑

k αk |ξkSyst.〉 ⊗ |ξkEnv.〉 entangled state

↓ QEnv. = I ⊗ (
∑

k λk |k〉〈k |) (unknown ??)

t = dt+ |ψSyst.〉 = |ξkSyst.〉 with proba |αk |2 meas. result yEnv. unknown!!

⇒ jump to unknown state. We can only characterize its “statistical mixture” at
dt+ by ρ =

∑
k |αk |2 |ξkSyst.〉〈ξkSyst.| of rank > 1

The perturbation is particularly bad for states |ψSyst.〉 for which the |ξkSyst.〉 differ a lot.

Unfortunately, this is often the case for the most "natural" states...



The continuous-time limit: coupled stochastic
differential equations

Known measurement (feedback control interaction):

dρ =

(
−i[H, ρ] + LρL† − 1

2
(L†Lρ+ ρL†L)

)
dt

+

(
Lρ+ ρL† − Tr

(
(L + L†)ρ

)
ρ

)
dw

driven by Wiener process dw = dy − Tr
(
(L + L†) ρ

)
dt

with perfectly correlated sensor output y .

Unknown measurement (disturbance interaction): Lindblad master equation

d
dt
ρ = − i

~ [H, ρ] + LρL† − 1
2

(L†Lρ+ ρL†L)
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An experiment to control light with atoms1

Cavity quantum electrodynamics [CQED] experiment:

a Microwave Field trapped between “cavity” mirrors is controlled

by tailored interaction with Rubidium Atoms sent through the cavity

C

B

D

R1
R2

1We were fortunate enough to collaborate at Ecole Normale Supérieure,
Paris with the "LKB" lab of Serge Haroche, 2012 Nobel laureate in physics.
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Goal: stabilize "non-classical" µwave states

A microwave "Schrödinger cat" (SC):

superposition of two opposite amplitudes
with quantum-characteristic negative Wigner pattern in between

0

get and stay there despite environment-induced "jumps away"



Recall:

|ψ(t)〉 ⊗ |0〉 µwave ⊗ “actuator” atom

CN C2

↓ Hinteraction on C2N : to be adjusted

α0(ψ)|ξ0(ψ)〉 ⊗ |0〉 + α1(ψ)|ξ1(ψ)〉 ⊗ |1〉 entangled state

↓ Qatom = I ⊗ (λ0|0〉〈0|+ λ1|1〉〈1|)

|ψ(t + 1)〉 = |ξ0(ψ)〉 , y(t) = λ0 with probability |α0(ψ)|2

|ψ(t + 1)〉 = |ξ1(ψ)〉 , y(t) = λ1 with probability |α1(ψ)|2

If measurement result not known: ρ →
∑

k |αk |2 |ξkSyst.〉〈ξkSyst.|



Designing a "feedback" controller

... but each (stochastic) observation also (stochastically) moves the system

Two parts in feedback action (a semi-separation principle)

I "Quantum inherent feedback", measuring but ignoring the result:
for well-chosen interaction & actuator initial state, the Kraus map

ρ →
∑

k |αk |2 |ξkSyst.〉〈ξkSyst.|

can be contracting, asymptotically stabilizing.

(interpreted like Watt governor: control by interconnection, evacuate ’entropy’ of
light state through atoms)

I "Active" feedback: adjust actions to measurement results

NB: "coherent feedback" does not make this separation, lets the quantum
system interact with a quantum controller only



1. Inherent feedback ∼ trajectory generation

We iteratively let the system interact with a new atom, tailoring

I constant parameter u describing initial atom state
|atom〉 = cos( u )|0〉+ sin( u )|1〉

I the interaction between atom and µwave field:

Hint =
δ

2
I ⊗ (|1〉〈1| − |0〉〈0|) + i

Ω

2
(a† ⊗ |0〉〈1|+ a⊗ |1〉〈0|)

remarkably, we attain our goal with δ(t) time-varying as:

� 1 = α = 0 = −α � 1

-
interaction time
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2. Classical feedback relies on scarce measurement

Limited info by measurement: atom detected in |0〉 or |1〉.

To take conclusions from there: know your enemy!

Analysis: most frequent environment-induced jump
is a photon loss
turns the cat by 180◦

⇒ Estimation: well-chosen measurement basis Qatom gives
mostly |0〉 if not turned, mostly |1〉 if turned

⇒ Action: adjust ref.phase by 180◦ if we think "something happened"



Combining "quantum" & "classical" feedback allows to
efficiently stabilize Schrödinger cats in an environment

quantum feedback & env. + classical feedback with
realistic errors
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Challenges for the future

Systematic design methods for quantum control / engineering,
especially making robust large networks

Stabilizing not a single state, but a space of states representing (unknown)
information: input from / output for interconnected subsystems

Optimal disturbance rejection performance

by using physically available actuation interactions
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