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First commercial products (00s)
company IDQ (random key generation & distribution)

Nature 24/04/2014 "China begins work on super-secure network as
?real-world? trial successfully sends quantum keys and data."



Next step: from components / software to hardware systems

Develop

> proper integration of interacting active components
more than "keep your state" goal of current commercial products
more than the 4 or 5 components in current "quantum chips"

> robustness to disturbances, error correction strategies
(software error correction already exists)

> scalability of physical behavior & of design methods
> improved components towards this goal



Why is the "classical" systems approach insufficient?

> In the quantum model, action and measurement are not separated:
taking measurement = interacting with system = applying action

> Interconnecting quantum systems changes their state space (see later
in this talk)

» Extreme time and physical scales (useconds, mKelvin noise,...)
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Isolated quantum systems just follow particular
classical dynamics
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Isolated quantum systems just follow particular
classical dynamics

dx = Ax L1y = —iH|y)
Ix = Alu)x alv) = —iHW) )

dt
u control parameter u control parameter

e.g. ball on u-shaped surface e.g. spin in u-electric field



Notation: physicists prefer Greek to Latin...

|4) € CN denotes a complex vector

(| = |¥)T is its Hermitian transpose (dual space)

(¥1|2) = (1] |12) is the Hermitian scalar product



Isolated quantum systems just follow particular
classical dynamics

@) = —iH)l¥)

State |[)) e CV , (¢|¢) =1 (complex sphere)
"wave function" or "probability density"

Hamiltonian H hermitian such that iH implies a (complex) rotation.

Caveats:

> Hamiltonian dynamics, not valid if the system interacts (dissipation or
measurement)

» Global phase is “irrelevant”:  |4) ~ €'® ). Actual system state is on
complex projective space: p = |) (¢].

» open-loop Hamiltonian dynamics cannot stabilize



Outline

2. open, interacting quantum systems # classical model
System-System interaction
System-OutsideWorld Interaction
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Classical systems in interaction evolve on the
cartesian product of individual state spaces

System 1: x5 € S; with orthonormal basis e1,, €24, ..., €na

System 2: xp € Sp with orthonormal basis e, €2, ..., €

Systems 1 & 2 interacting: x € Sa x Sp with orthonormal basis

e1a><0b, egaXOb,..., eNa><0b, Oaxew,..., Oaxer.

= dimension N; + N,



Quantum systems in interaction evolve on the
tensor product of individual state spaces

System 1: |¢a) € Ha with orthonormal basis |12), |22), ..., |[Na)

System 2: |¢») € Hp with orthonormal basis |15), |25), ..., |Nb)

Systems 1 & 2 interacting: |¢) € Ha ® Hp Wwith orthonormal basis

Na)®[1p) , Na)®12p), ..., [1a) ® [Np) ,
|23> ® ‘1b> ) |23> ® |2b> 3 e ‘2511) ® |Nb> )
INa) @ [16) » [Na) ®[25) , ..., |Na) ®[Np) .

= dimension N; * N,



The dynamics of interaction is richer for quantum
systems than for classical systems

N interacting D-dimensional systems
classical: cartesian product state D « N
quantum: tensor product state DV
joint probability: f(x, xz, ...) is also DV - dimensional

= Quantum systems "are probabilistic"... and a bit more:



The dynamics of interaction is richer for quantum
systems than for classical systems

N interacting D-dimensional systems
classical: cartesian product state D « N
quantum: tensor product state DV
joint probability: f(x1, Xz, ...) is also D" - dimensional

= Quantum systems "are probabilistic"... and a bit more:

States |¢) that cannot be written |¢) = |¢2) ®

1p) are entangled.

> Bellstate 5 (|04)[00) + [12)[16)) = J5(IXsa)lXsb) + |x-a)[X-b))
e.g. where [x;) = 75(|0) + 1)) and |x-) = J5(/0) - [1))

» Schrédinger cat %(|dead)|photon shot) + |alive)|photon not shot))
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Act 1: (Strong) interaction with a classical system
leads to stochastic projective measurement

Measurement operator
Hermitian matrix Q = >, A« P«

Ak eigenvalues, Pi projector on eigenspace

Measurement result

output y = M with probability px(Q) = |(¥[Pk[¢)]
state  [¢) — Pxlv) /|| Pcl) |

matrices do not commute =- Heisenberg uncertainty principle
Qposition €igenvectors = Fourier transform of Qmomentum €igenvectors



Act 2: Mixed interaction yields
“weak measurement” and control

[4(1))|®|l0) state ® “actuator”
cN C?

2N
1 Hiteraction 0N C

Lofow)lﬁow)) ®10) + aiw)léiw) © |1ﬂ entangled state

b Qactator = 1 ®@ (Ao|0)(0] + A1]1)(1])

with probability |y |?
with probability |cvsy)[2

[¥(t+ 1)) = [Sow))|» | Y(T) = o
[p(t+ 1)) = |&1))|s | Y(E) = N

"weak": |£oy)), [€1(w)) May be just slight modifications of |1 (t))



Control by interaction allows asymptotic stabilization
and feedback

Isolated quantum system

»(T) = U(T) [(0)) with U(¢) unitary

= different |¢/(0)) cannot converge to each other

New possibility with controlled interaction

Measurement operation induces non-unitary evolution

= can make different initial conditions converge to target

Measurement result informs on system state = allows feedback.



Act 3: Quantum systems are very fragile to interaction
with the environment

Interaction with a “measuring environment” induces system jumps

t=0 ‘@ |VEny.) ‘ system ® “environment”

4 Hinteraction 0N Hsyst @ Henv.
t=dt” sz akléksyst) @ [Ekeny.)

L Qen =1® (324 Mlk)(kl)  (unknown ??)

entangled state

t=dt* ’ [thsyst) = |gksyst,>\with proba |ax[?  meas. result yen, unknown!!

= jump to unknown state. We can only characterize its “statistical mixture” at
dtt by p=34 lokl? |€ksyst.) (Eksyst| Of rank > 1

The perturbation is particularly bad for states |t)sys.) for which the [£xs e ) differ a lot.
Unfortunately, this is often the case for the most "natural” states...



The continuous-time limit: coupled stochastic
differential equations

Known measurement (feedback control interaction):
dp = (—i[H, pl + LpLt — %(U Lp+pL! L)) at
n <Lp ol —Tr ((L T U)p) p) aw

driven by Wiener process dw = dy — Tr ((L+ L") p) dt
with perfectly correlated sensor output y.

Unknown measurement (disturbance interaction): Lindblad master equation

d

; 1
Rl | Tttt T
gi? = ~wlH. P+ LpL" = S(L'Lp + pL'L)
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3. two types of "feedback", proved experimentally



An experiment to control light with atoms’

Cavity quantum electrodynamics [CQED] experiment:

a | Microwave Field trapped between |“cavity” mirrors is controlled

by tailored interaction with _ sent through the cavity

"We were fortunate enough to collaborate at Ecole Normale Supérieure,
Paris with the "LKB" lab of Serge Haroche, 2012 Nobel laureate in physics.



Goal: stabilize "non-classical" ywave states

Classical electric field: Fresnel diagram with uncertainty ball

‘g,

Integrating along a radius gives the
probability distribution of field amplitude

for this quadrature.




Goal: stabilize "non-classical" ywave states

Quantum electric field: Wigner diagram = pseudo-proba-distribution

. \‘A Integrating along a radius gives the

probability distribution of field amplitude
for this quadrature.

Different quadratures do not commute,
i.e. are not simultaneously observable

" \/\/\/\/\ = Wigner function can be negative !!



Goal: stabilize "non-classical" ywave states

A microwave "Schrédinger cat" (SC):

superposition of two opposite amplitudes
with quantum-characteristic negative Wigner pattern in between

get and stay there despite environment-induced "jumps away"



Recall:

[(1))|®]|0) pwave ® “actuator” atom
cV | |c?

1 Hiteraction 0N C2V: to be adjusted

| colaw) ® 10) + axplén) @11) | entangled state

b Qaom = 1® (X0]0)(0] + A[1)(1])

with probability |y |?
with probability |cvsy)[?

[¥(t+1)) = [Sow))|» | Y(T) = o
[W(t+1)) = [&1w)|s | Y(1) = As

If measurement result not known: p — >, |ak|2 |€ksyst.) (Eksyst |



Designing a "feedback" controller

... but each (stochastic) observation also (stochastically) moves the system

Two parts in feedback action  (a semi-separation principle)

> "Quantum inherent feedback", measuring but ignoring the result:
for well-chosen interaction & actuator initial state, the Kraus map

P — Zk |ak|2 ‘&(Syst.)(ngyst.‘
can be contracting, asymptotically stabilizing.

(interpreted like Watt governor: control by interconnection, evacuate ’entropy’ of
light state through atoms)

> "Active" feedback: adjust actions to measurement results

NB: "coherent feedback" does not make this separation, lets the quantum
system interact with a quantum controller only



1. Inherent feedback ~ trajectory generation

We iteratively let the system interact with a new atom, tailoring
» constant parameter u describing initial atom state
|atom) = cos( u )|0) + sin( u )|1)

)
Hint =

> the interaction between atom and pwave field:
2

o (11)(1] - 10)(0]) + i%(aT ®[0)(1[+a®[1)(0])

remarkably, we attain our goal with §(t) time-varying as:




Goal: stabilize "non-classical" ywave states

A microwave "Schrédinger cat" (SC):

superposition of two opposite amplitudes
with quantum-characteristic negative Wigner pattern in between

get and stay there despite environment-induced "jumps away"



2. Classical feedback relies on scarce measurement

Limited info by measurement: atom detected in |0) or |1).

To take conclusions from there: know your enemy!

Analysis: most frequent environment-induced jump
is a photon loss
turns the cat by 180°

= Estimation: well-chosen measurement basis Qaiom gives
mostly |0) if not turned, mostly |1) if turned

= Action: adjust ref.phase by 180° if we think "something happened"



Combining "quantum" & "classical" feedback allows to
efficiently stabilize Schrodinger cats in an environment

quantum feedback & env. + classical feedback with
realistic errors
1 1
08 0.8
206 206
% 0.4 é 0.4
0.2 0.2
0 step 0 step!
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
average 75 % average 90 %

(simulations)



Recap

1. isolated quantum systems ~ classical model

2. open, interacting quantum systems # classical model
System-System interaction
System-OutsideWorld Interaction

3. two types of "feedback", proved experimentally



Challenges for the future

Systematic design methods for quantum control / engineering,
especially making robust large networks

Stabilizing not a single state, but a space of states representing (unknown)
information: input from / output for interconnected subsystems

Optimal disturbance rejection performance

by using physically available actuation interactions
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