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Stability, Told by it Developers

“The authors of the present manuscript would like to insist on the

fact that only the attentive reading of the original documents can

contribute to correct certain errors endlessly repeated by different

authors.”

J. J. Samueli & J. C. Boudenota

a Translated from H. Poincaré (1854-1912), physicien, Editions Ellipses: Paris, 2005.
The citation is taken from the epilogue of the mentioned biography of the last
universalist –as his biographers call H. Poincaré. The authors give interesting
evidence of H. Poincaré’s shared discovery – with Lorentz – of restrained relativity
– cf. Comptes Rendus de l’Académie des Sciences, Paris 9th/June/1905.



3

Stability, generally speaking

Taken from Rouche/Mawhin [55] –see also [56].

[Consider] a solution of a differential equation representing a physical

phenomenon or the evolution of some system [. . . ] There always ex-

ist two sources of uncertainty in the initial conditions. Indeed, when

one attempts to repeat a given experiment, the reproduction of the

initial conditions is never entirely faithful: for instance, a satellite

can only be placed in orbit from one point and with a velocity that

depends on the variable circumstances related to the launching of the

rockets [. . . ] It is thus fundamental to be able to recognise the cir-

cumstances under which small variations in the initial conditions will

only introduce small variations in what follows of the phenomenon.

•
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Stability, generally speaking

• Abuse of notation: “a system is stable. . . ”

• Stability is a property of the solutions of differential equations by which,

given a “reference” solution x∗(t, t∗◦, x
∗
◦) of

ẋ = f(t, x) , x∗◦ = x(t∗◦, t
∗
◦, x
∗
◦) ∈ Rn , t ≥ t∗◦ , t∗◦ ≥ 0 ,

any other solution x(t, t◦, x◦) starting close to x∗(t, t∗◦, x
∗
◦) (i.e. such that

t∗◦ ≈ t◦ and x∗◦ ≈ x◦), remains close to x∗(t, t∗◦, x
∗
◦) for later times.

• Theorem on continuity of solutions with respect to initial conditions estab-

lishes sufficient conditions for a perturbed solution to remain “close” to an

unperturbed solution over a finite interval of time.

• Question of stability: “small variations in the initial conditions [will] only

introduce small variations in what follows of the phenomenon”
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Stability, generally speaking

• Solutions of differential equations are commonly referred to as

“trajectories”;

Following [14, Hahn ’59, p. 1], we say that

“a point of the real, n-dimensional space shall be denoted by the

coordinates x1, . . . , xn. [. . . ] In addition to the n-dimensional x-

space which is also called phase space, we shall refer to the (n+ 1)-

dimensional space of the quantities x1, . . . , xn, t, which will be called

motion space. [. . . ]

The notation x= x(t) indicates that the components xi of x are

functions of t. If these functions are continuous, then the point

(x(t), t) of the motion space moves along a segment of a curve as t

runs from t1 to t2, [. . . ]

The projection of a motion upon the phase space is called the phase

curve, or trajectory, of the motion. In this case the quantity t plays

the role of a curve parameter. •
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Types of stability

• Lagrange Stability

• Dirichlet’s Stability

• Lyapunov Stability

• Input-Output Stability

• Hyperstability

• Input-to-State Stability

• Differential inclusions

• Diffrerence equations

• Partial differential equations

• etc.
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Lagrange and Lagrange’s stability

“Messieurs de la Place, Cousin, le Gendre et moi, ayant

rendu compte d’un Ouvrage intitulé : Méchanique analitique, par

M. de la Grange, l’Académie a jugé cet Ouvrage digne de son

approvation, et d’être imprimé sous son Privilège.

Je certifie cet Extrait conforme aux registres de l’Académie. A Paris,

ce 27 février 1788.

Le Marquis DE CONDORCET”
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Lagrange and Lagrange’s stability

(Cited and translated from [27, pp. 69–70]) In a system of bodies

in equilibrium, the forces P , Q, R, . . . , stemming from gravity,

are, as one knows, proportional to the masses of the bodies and,

consequently, constant; and the distances p, q, r, . . . meet at the

centre of Earth. One will thus have, in such case,

Π = Pp+ Qq + Rr + . . . ;

[. . . ] If one now considers the same system in motion, and let u′,

u′′, u′′′, . . . be the velocities, and m′, m′′, m′′′, . . . be the respec-

tive masses of the different bodies that constitute it [the system in

motion], the so well-known principle of conservation of living forces

[. . . ] yield this equation:

m′u′2 +m′′u′′2 +m′′′u′′′2 + . . . = const.− 2Π .

•
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Lagrange and Lagrange’s stability

The concept of equilibirum

(Cited and translated from [27, p. 70]) Hence, since in the state of

equilibrium, the quantity Π is a minimum or a maximum, it follows

that the quantity m′u′2 +m′′u′′2 +m′′′u′′′2 + . . ., which represents

the living force of the whole system, will be at same time a minimum

or a maximum; this leads to the following principle of Statics, that,

from all the configurations that the system takes successively, that

in which it has the largest or the smallest living force, is that where it

would be necessary to place it [the system] initially so that it stayed

in equilibrium. (See the Mémoires de l’Académie des Sciences de

1748 et 1749.) a •
a After J. Bertrand, editor of the 3rd edition of Lagrange’s treatise, Lagrange had

attributed in [9], the principle on Statics to the the “little-known geometrician
Courtivron”; Lagrange removed Courtivron’s name from the second edition to
substitute it with the date of publication.
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Lagrange and Lagrange’s stability

On the stability of the equilibirum

(Cited and translated from Lagrange’s treatise [27, p. 71])

[. . . ] we will show now that if this function [Π] is a minimum, the

equilibrium will have stability, that is to say, if the system being

supposed initially at the state of equilibrium and then being, no

matter how little, displaced from such state, it will tend itself to come

back to that position while making infinitely small oscillations: on

the contrary, in the case that the same function will be a maximum,

the equilibrium will have no stability, and once perturbed, the system

will be able to make oscillations that will not be very small, and that

may make it to drift farther and farther from its initial state. •
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Lagrange’s stability

Definition 1 (Lagrange’s original stability) Consider a mechanical system

with state [q, q̇]. We say that the point q = 0 is stable if for any (infinitely

small) δ > 0 and t◦ ≥ 0

|q(t◦)| ≤ δ =⇒ |q(t)| → 0 ∀ t ≥ t◦ . •

• Lagrange’s stability states that “[the system] will tend itself to come back

to that [equilibrium] position”; (attractivity)

Definition 2 (Lagrange’s “interpreted” stability) Consider a mechanical

system with state [q, q̇]. We say that the point q = 0 is stable if for any

(infinitely small) δ > 0 and t◦ ≥ 0 there exists ε > 0 such that

|q(t◦)| ≤ δ =⇒ |q(t)| ≤ ε ∀ t ≥ t◦ .

–Dirichlet, etc.
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Dirichlet’s stability

(Cited and translated from [29, p. 457])

The function of coordinates depends only on the nature of forces

and can be expressed by a defined number of independent variables

λ, µ, ν, . . . , ∑
mv2 = ϕ(λ, µ, ν, . . .) + C

[. . . ] the condition that expresses that [. . . ] the system is at an

equilibrium position, coincides with that which expresses that for

these same values [of the coordinates], the total derivative of ϕ

is zero; hence, for each equilibrium position, the function will be a

maximum or a minimum. If a maximum really takes place, then

the equilibrium is stable, that is, if one displaces infinitely little the

points [coordinates] of the system from their initial values, and we

give to each a small initial velocity, in the whole course of the mo-

tion the displacements of the points of the system, with respect to

their equilibrium position, will remain within certain limits [that are]

defined and very small. •
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Dirichlet’s stability

Dirichlet speaks of a maximum of the function ϕ(λ, µ, ν, . . .) corresponding to

a stable equilibrium; this makes sense if we consider that in modern notation

the potential energy corresponds to −ϕ and the independent coordinates λ,

µ, ν, . . . correspond to the generalised coordinates of a Lagrangian system

(see e.g. [13]).

Definition 3 (Dirichlet’s stability) Let x := [q>, q̇>]. We say that the

point q = 0 is stable if for each (infinitely small) δ > 0 and t◦ ≥ 0 there

exists an (infinitely small) ε > 0 such that

|x(t◦)| ≤ δ =⇒ |q(t)| ≤ ε ∀ t ≥ t◦ .
•

Definition 4 (Lagrange’s “interpreted” stability) Consider a mechanical

system with state [q, q̇]. We say that the point q = 0 is stable if for any

(infinitely small) δ > 0 and t◦ ≥ 0 there exists ε > 0 such that

|q(t◦)| ≤ δ =⇒ |q(t)| ≤ ε ∀ t ≥ t◦ .
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Dirichlet’s theorem on stability

(Cited and translated from [29, p. 459])

[. . . ] the equilibrium position corresponds to the values λ = 0,

µ = 0, . . . , we will also suppose that ϕ(0, 0, 0, . . .) = 0; [. . . ]

hence,∑
mv2 = ϕ(λ, µ, ν, . . .)− ϕ(λ◦, µ◦, ν◦, . . .) +

∑
mv2◦ .

[. . . ] then we can easily show that, if we take λ◦, µ◦, ν◦, . . . nu-

merically smaller than l, m, n, . . . , and at same time one satisfies

the inequality

−ϕ(λ◦, µ◦, ν◦, . . .) +
∑

mv2◦ < p ,

each of the variables λ, µ, ν, . . . will remain during the complete

duration of the motion below the limits l, m, n, . . . . •
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Dirichlet’s theorem on stability

Dirichlet’s proof can be explained in modern terms using the total energy

function, in terms of generalised positions q := λ, µ, ν, . . . and velocities q̇,

i.e.

V (q, q̇) := T (q, q̇) + U(q)

where T (q, q̇) :=
∑
mv2 and U(q) := −ϕ(λ, µ, ν, . . .), i.e. in general v

depends on the generalised velocities and positions and the potential energy

is assumed to depend only on the positions. As Dirichlet points out, we can

assume without loss of generality that U(0) = 0. Dirichlet then posses

p := min{U(q) : |λ| = l, |µ| = m, |ν| = n . . .} .
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Dirichlet’s theorem on stability

Now, consider initial positions q(t◦) and velocities q̇(t◦) such that V (q(t◦), q̇(t◦))

< p, the equation of living forces (principle of energy conservation) is

V (q(t), q̇(t)) = V (q(t◦), q̇(t◦)) ∀ t ≥ t◦

so we have, necessarily, V (q(t), q̇(t)) < p for all t ≥ t◦. Equivalently,

T (q(t), q̇(t))+U(q(t)) < p for all t ≥ t◦. If any of the values λ, µ, ν, . . . came

to overpass its respective limit, say at t = t∗, we would have U(q(t∗)) ≥ p

and, necessarily, T (q(t∗), q̇(t∗)) < 0 which is impossible.
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Lagrange stability (in modern terms)

• The terminology “stability in the sense of Lagrange” is attributed, by Hahn

[14, p. 129], to La Salle [16]; in the latter one reads:

“the boundedness of all solutions for t ≥ 0 is also a kind of stability,

called Lagrange stability”.

• Consider the system

ẋ = F (t, x) (1)

where F is continuous, and F (t, ·) is locally Lipschitz, uniformly in t and

F (t, 0) ≡ 0.

Definition 5 (Lagrange stability) The system (1) is said to be Lagrange

stable if for each δ > 0 and t◦ ≥ 0 there exists ε > 0 such that

|x(t◦)| ≤ δ =⇒ |x(t)| ≤ ε ∀ t ≥ t◦ ≥ 0 .

•
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A theorem on Lagrange stability

• Theorems on boundedness of solutions can be found, e.g., in the texts of

Yoshizawa [66], Rosier [3] and Leonov [30]. The following result is from [16].

Theorem 4—A Lagrange Stability Theorem

Let Ω be a bounded neighbourhood of the origin and let Ωc be its

complement (Ωc is the set of all points outside Ω). Assume that W (x) is a

scalar function with continuous first partials in Ωc and satisfying:

1) W (x) > 0 for all x in Ωc,

2) Ẇ (x) ≤ 0 for all x in Ωc,

3) W (x)→∞ as ‖x ‖ → ∞ .

Then each solution of (2) [ ẋ = X(x) ] is bounded for all t ≥ 0.

• Another interpretation is provided by Rouche –[57]: Dirichlet’s stability is

seen as stability with respect to part of coordinates.
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Lyapunov’s stability

“J’ai seulement eu en vue d’exposer dans cet Ouvrage ce que je suis

parvenu à faire en ce moment et ce qui, peut-être, pourra servir de

point de départ pour d’autres recherches de même genre.”∗

A. M. Liapounoff, 1907

∗I only had the purpose of exposing in this Work what I managed to

do at this time and what, perhaps , will be the starting point for other

similar research.
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Lyapunov’s tratise (main) editions

[A] A. M. Lyapunov (1892), Obschaya zadacha ob ustoichivosti dvizhenya.
Coobschenya Kharkovskogo Matematicheskogo Obasestva.
Journal title sometimes cited as: Comm. Math. Soc. Kharkov.

[B] A. M. Liapounoff (1907), Problème de la stabilité de mouvement.
Annales de la faculté de sciences de Toulouse, 9:203–474.
French translation of [A] made by E. Davaux and revised by the author.

[C] A. M. Liapounoff (1947), Facsimile reprint of [B]. Published in Ann.
Math. Studies, vol. AM-17, Princeton University Press.

[D] A. M. Lyapunov (1950), Obschaya zadacha ob ustoichivosti dvizhenya.
Gostehiszdat, Moscow-Leningrad. Reprint of [A]

[E] A. M. Lyapunov (1992), The general problem of stability of motion.
Int. J. of Contr., 55. No. 3. English translation of [C].

[F] A. M. Lyapunov (1996), The general problem of stability of motion.
Academic Press, NY. Reprint of [E], edited and commented by T. Fuller.
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Lyapunov’s stability

Borrowing inspiration from Lagrange and Dirichlet

(Cited and translated from [34, p. 209]) Let us consider a material

[physical] system with k degrees of freedom. Let

q1, q2, . . . qk

be k independent variables by which we agree to define its position.

[. . . ]

Considering such variables as functions of time t, we will denote their

first derivatives, with respect to t, by

q′1, q
′
2, . . . q

′
k .

In each problem of dynamics, [. . . ] these functions satisfy k second-

order differential equations. •
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Lyapunov’s stability

Let us assume that a particular solution is found to be

q1 = f1(t), q2 = f2(t), . . . qk = fk(t) ,

in which the quantities qj are expressed by real functions of t, [. . . ]

To this particular solution corresponds a determined motion of our

system. By comparing it [the motion] [. . . ] to other motions of

the system that are plausible under the same forces, we will call it

unperturbed motion, and all the rest, with respect to which it is

compared, will be referred to as perturbed motions. •
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Lyapunov’s stability

Denoting by t◦ an arbitrary time instant, let us denote the corre-

sponding values of the quantities qj , q
′
j , in an arbitrary motion, by

qj0, q′j0.

(Cited and translated from [34, p. 210])

Let

q1 0 = f1(t◦) + ε1, q2 0 = f2(t◦) + ε2, . . . , qk 0 = fk(t◦) + εk ,

q′1 0 = f ′1(t◦) + ε1, q′2 0 = f ′2(t◦) + ε2, . . . , q′k 0 = f ′k(t◦) + ε′k ,

where εj , ε
′
j are real constants. [. . . ] that we will call perturbations,

will define a perturbed motion. •
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Lyapunov’s stability

[. . . ] let Q1, Q2, . . . , Qn be given continuous and real functions of

the quantities

q1, q2, . . . qk, q′1, q
′
2, . . . q

′
k .

For the unperturbed motion they will become known functions of

t that we will denote respectively F1, F2, . . . Fn. For a perturbed

motion they will become functions of the quantities

t, ε1, ε2, . . . εk, ε′1, ε
′
2, . . . ε

′
k .

When the εj , ε
′
j are equal to zero, the quantities

Q1 − F1 , Q2 − F2 , . . . , Qn − Fn

will be zero for each value of t. •
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Lyapunov’s stability

• Lyapunov introduces his stability –cf. [34, p. 210]):

“if without making the constants εj , ε
′
j zero, we make them infinitely

small, the question that arises is whether it is possible to assign to the

quantities Qs − Fs infinitely small limits, such that these quantities

never reach them in absolute value.

The solution to this question [. . . ] depends on the nature of the

considered unperturbed motion as well as on the choice of the func-

tions Q1, Q2, . . . , Qn and on the time instant t◦. Hence, [. . . ] the

answer to this question will characterise [. . . ] the unperturbed mo-

tion, and it is such that it will express the property that we will call

stability [. . . ] ”
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Lyapunov’s definition

(Cited and translated from [34, pp. 210-211])

Let L1, L2, . . . , Ln be positive given numbers. If for all values

of these numbers, no matter how small they are, one can choose

positive numbers

E1, E2, . . . Ek E′1, E
′
2, . . . E

′
k ,

such that, the inequalities

|εj | < Ej ,
∣∣ε′j∣∣ < E′j (j = 1, 2, . . . k)

being satisfied, we have

|Q1 − F1| < L1 , |Q2 − F2| < L2 , . . . , |Qn − Fn| < Ln ,

for all values of t greater than t◦, the unperturbed motion will be

called stable with respect to the quantities Q1, Q2, . . . ,

Qn; in the opposite case, it will be called unstable with respect to

the same quantities. •
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Lyapunov’s definition

Lyapunov’s stability beyond Lyapunov stability

• Stability in the sense of Lyapunov is defined with respect to functions of

the perturbed and unperturbed motions. Let Q : R2k → Rn (where n is not

necessarily equal to 2k) be continuous functions of the coordinates q, q′ and

define the functions F : R≥0 → Rn as

F (t) := Q(f(t), f ′(t)) ∀ t ∈ R .

Definition 6 (Lyapunov’s original statement) We shall say that the un-

perturbed motion (t, f(t), f ′(t)) is Lyapunov stable with respect to Q, if for

any (infinitely small) ε > 0 and t◦ ∈ R there exists δ > 0 such that∣∣q(t◦)− f(t◦), q
′(t◦)− f ′(t◦)

∣∣ ≤ δ =⇒
∣∣Q(q(t), q′(t))− F (t)

∣∣ ≤ ε .
•
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On Lyapunov’s definition

• when the function Q(q, q′) = q (i.e. n = k) and the unperturbed motion

is the origin of the phase space, i.e. (t, f(t), f ′(t)) = (t, 0, 0) then,

observing that Q(0, 0) = 0, we have F ≡ 0 and therefore, we recover

the property of stability of part of coordinates, i.e. for each ε > 0 and

t◦ ∈ R there exists δ > 0 such that∣∣q◦, q′◦∣∣ < δ =⇒ |q(t)| < ε ∀ t ≥ t◦ ,

which is called (for t◦ ≥ 0) in [57] “stability in the sense of Lagrange-

Dirichlet”

• when Q corresponds to the “identity” operator, i.e. Q(r, s) = (r, s) and

the unperturbed motion is the origin of the phase space then we have

F ≡ 0. In this case, Lyapunov’s stability reduces to the following: “for

any ε > 0 and t◦ ∈ R there exists δ > 0 such that the inequalities∣∣q◦, q′◦∣∣ < δ =⇒
∣∣q(t, t◦, q◦, q′◦), q′(t, t◦, q◦, q′◦)∣∣ < ε .
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On Lyapunov’s contribution

• Lyapunov raises the question of stability beyond the realm of physical sys-

tems, by considering the stability of motion for general differential equations:

(Cited and translated from [34, pp. 212])

The solution to our question depends on the study of differential

equations of the perturbed motion or, in other words, of the study

of the differential equations satisfied by the functions

Q1 − F1 = x1, Q2 − F2 = x2, . . . , Qn − Fn = xn .

[. . . ] We will assume that the number n and the functions Qs [are]

such that the order of this system is n and that can be put in the

form

(1)
dx1
dt

= X1 ,
dx1
dt

= X2 , . . . ,
dx1
dt

= Xn .

•
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On Lyapunov stability

• From the above formulations we recover the definition of Lyapunov stability

that we are used to seeing in textbooks on nonlinear systems, such as [19,

p. 98], [18, p. 98], [20, p. 112], [65, p. 136] and on ordinary differential

equations, e.g. [56, p. 6]:

Definition 7 (Lyapunov stability) The origin is a stable equilibrium of Equa-

tion (1) if, for each pair of numbers ε > 0 and t◦ ≥ 0, there exists δ =

δ(t◦, ε) > 0 such that

|x(t◦)| < δ =⇒ |x(t)| < ε ∀ t ≥ t◦ ≥ 0 . (2)

•
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On Lyapunov stability

In some texts and articles, starting at least with [15], one also finds the

following definition of stability:

Definition 8 (Lyapunov stability) The origin is a stable equilibrium of Equa-

tion (1) if for each t◦ ≥ 0 there exists ϕ ∈ K such that

|x(t, t◦, x◦)| ≤ ϕ(|x◦|) ∀ t ≥ t◦ ≥ 0 . (3)

•

We recall, from [15], that ϕ ∈ K if it is “defined, continuous, and strictly

increasing on 0 ≤ r ≤ r1, resp. 0 ≤ r < ∞, and if it vanishes at r = 0:

ϕ(0) = 0”. It is established in [15, p. 169] that the two definitions, 7 and 8,

are equivalent. See alsoa [19, p. 136], [20, p. 150].
aStrictly speaking, in [19] and [20] the author considers the case when ϕ, hence δ, are

independent of t◦.



32

Lyapunov vs. Lagrange stability

Which implies which?

Lyapunov stable systems may be Lagrange unstable and viceversa.

Example 1 Consider the van der Pol oscillator:

ẋ1 = x2,

ẋ2 = −x1 + (1− x21)x2

−2 −1 0 1 2
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Lyapunov vs. Lagrange stability

Example 2 For the pendulum: Iq̈ +mg` sin(q) = 0

• the origin is Lyapunov stable;

• for large (in absolute value) initial velocities, the trajectories q(t) grow

unboundedly; it is not Lagrange stable according to Definition 5;

• the equilibria q = 2nπ, q̇ = 0 with n ∈ Z are Dirichlet stable.
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Lyapunov’s second method

(Cited and translated from [34, p. 222]) All the processes that we can mention

to solve the question that occupies us may be classified in two categories.

In the first, we shall fit all the processes that reduce to studying directly the

perturbed motion and which, consequently, depend on the search for general

or particular solutions of the differential equations under consideration. [. . . ]

In the second we shall fit all sort of processes that are independent of the

search for solutions of the differential equations of the perturbed motion.

Such is the case, for instance, of the known process of analysis of stability of

the equilibrium, in the case that there exists a function of forces.

These processes will reduce to the search of [. . . ] functions of the variables

x1, x2, . . ., xn, t, whose total derivatives with respect to t, under the hy-

pothesis that x1, x2, . . ., xn are functions of t satisfying the equations (1),

must satisfy such and such given conditions.

The group of processes of this category will be called the second method.
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Lyapunov’s second method

Lyapunov Functions

(Cited and translated from [34, p. 256])

we will consider real functions of real variables

(39) x1, x2, . . . , xn, t,

subject to the constraint

(40) t ≥ T , |xs| ≤ H (s = 1, 2, . . . , n) .

We will speak of functions that, on such domain, are continuous and

uniform and that are zero if

x1 = x2 = . . . xn = 0 .

•
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Lyapunov’s second method

Lyapunov Functions

(Cited and translated from [34, p. 257]) Let us suppose that the considered

function V is such that, under the conditions (40), T being sufficiently large

and H sufficiently small, it can only take values of a single sign.

Then, we shall say that it is a function of fixed sign; and when it will be

needed to indicate its sign, we shall say that it is a positive function or a

negative function.

If, moreover, the function V does not depend on t and if the constant H can

be chosen sufficiently small so that, under the conditions (40), the equality

V = 0 cannot occur unless we have

x1 = x2 = . . . xn = 0 ,

we shall call the function V , as if it were a quadratic function, definite function

or, trying to attract attention on its sign, positive definite or negative definite.
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Lyapunov’s second method

Lyapunov Functions

Concerning functions that depend on t, we shall still use these terms

but then, we shall only speak of a definite function V under the

condition that we can find a function W independent of t, that is

positive definite and that in addition one of the expressions

V −W − V −W

be a positive function. •
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Lyapunov’s theorem on stability
(Cited and translated from [34, pp. 258-259]) Everybody knows La-

grange’s theorem on the stability of the equilibrium in the case when

there exists a function of the forces, as well as the elegant demonstra-

tion given by Lejeune-Dirichlet. The latter relies on considerations that

may serve the demonstration of many other analogous theorems.

Guided by these considerations we will establish here the following

propositions:

Theorem I. – If the differential equations of the perturbed

motion are such that it is possible to find a definite function V,

whose derivative V′ is a function of fixed sign and opposite to

that of V, or it is exactly zero, the unperturbed motion is stable.

First sentence of the proof:

Let us suppose, to fix the ideas, that the function found V is positive

definite and that its derivative V ′ is negative or identically zero. •



39

Classical theorem on Lyapunov stability

(Cited from [15, p. 102]) Consider the differential equationa

(25.1) ẋ = f(x) , 0 ≤ |x| ≤ h , f ∈ E

Theorem 25.1. If there exists a positive definite function v(x) whose

derivative v̇(x) for (25.1) is negative semi-definite or identically zero

then the equilibrium of (25.1) is stable. •

• W. Hahn (1967), Stability of motion. Springer-Verlag, New York.
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Asymptotic stability
Lyapunov introduced the property of asymptotic stability in a remark following

the proof of his theorem on stability, –cf. [34, Theorem I], in the following

terms:

(Cited and translated from [34, p. 261])

Remark II. – If the function V , while satisfying the conditions of the

theorem [Theorem I], allows an infinitely small upper bound, and if

its derivative represents a definite function, one can show that every

perturbed motion, sufficiently close to the unperturbed motion, will

approach the latter asymptotically. •

• The terminology “admits an infinitely small upper bound” was common

in Soviet literature at least until the 1950s; this is today referred to in the

literature as “decrescent”.

• Lyapunov only says that the derivative of V should be definite; yet, accord-

ing to [34, Theorem I] and the way Lyapunov introduced his functions, it

is understood that he means definite and of opposite sign to that of V ′.
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Asymptotic stability
• N. N. Krasovsk̆ıi in [22, p. 2] says, just before presenting the definitions

of stability and asymptotic stability, that “some of the definitions of refined

types of stability follow Četaev’s annotations in” [8, pp. 11-36].

• In Lyapunov’s definition one implicitly reads that the property is local, that

is, it is a property of the origin with respect to motions that originate in an

infinitely small open neighbourhood of the trivial solution.

• Furasov’s definition of (local) asymptotic stability is the following:

(Cited and translated from [12, p. 13])

D e f i n i t i o n 2.2. The unperturbed motion Σ is called asymptoti-

cally stable, if it is stable a la Lyapunov and there exists a positive

constant ∆ ≤ δ(ε, t◦), such that the condition

x(x◦, t)→ 0 as t→∞

holds for all the solutions of the system, starting in the region

‖x◦‖ < ∆ . •
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Asymptotic stability

The property that |x◦| ≤ δ implies that

lim
t→∞

x(t, t◦, x◦) = 0

was sometimes called quasi-asymptotic stability (cf. [2, p. 142], cf., [14,

p. 7]a) or quasi-equi-asymptotic stability –cf. [66, p. 44] and it may be

expressed by the more precise statement: |x◦| < δ implies that for each

η > 0 there exists T (η) > 0 such that

|x(t, t◦, x◦)| < η ∀t > t◦ + T . (4)

In general the number T depends on x◦ and on t◦; not only on η.

aHahn uses p(t, t◦, x◦) to denote the solutions.
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Asymptotic stability

This brings us to the following well-adopted definition of asymptotic stability:

the equilibrium is asymptotically stable if it is stable and attractive (cf. [65,

Definition 31, p. 141], [56, 55, Definition 2.11, p. 6], [20, Definition 4.1, p.

112]). More precisely, we have:

Definition 9 (Asymptotic stability) We say that the origin of (1) is asymp-

totically stable if it is stable in the sense of Definition 7 and there exists δ > 0

such that, for each η > 0, t◦ ≥ 0 there exists T (η, t◦) > 0, such that

|x◦| < δ =⇒ |x(t, t◦, x◦)| < η ∀t > t◦ + T . (5)

•
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Asymptotic stability

Definition 10 The equilibrium of the differential equation

ẋ = f(t, x) t ≥ t◦

is said to be attractive if there exists η > 0 and, for each x◦ satisfying

|x◦| < η, a function σ of class L such that

|x(t, t◦, x◦)| < σ(t− t◦), ∀ t > t◦ .
•

We recall from [15, p. 7] that “a real function σ(s) belongs to class L if

it is defined, continuous and strictly decreasing on 0 ≤ s1 ≤ s < ∞ and if

limσ(s) = 0 (s→∞)”. Similarly as in the case of Definition 8, the function

σ depends in general on t◦.

Except for slight changes in the notation, this definition is taken from [15, p. 7, Def. 2.8]
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Globalization of asymptotic stability

J. P. La Salle in [16], 1960:

(Cited from [16, pp. 521–522]) [. . . ] it is never completely satisfac-

tory to only know that the system is asymptotically stable without

some idea of the size of the region of asymptotic stability [. . . ] Ide-

ally, we might like to have that the system return to equilibrium

regardless of the size of the [initial] perturbation. •

In early literature (1950s) the terms asymptotic stability in the whole and

asymptotic stability in the large were introduced in Soviet literature to dis-

tinguish the case when asymptotic stability holds not only for infinitely small

initial perturbations (i.e. conditions) as originally defined by A. M. Lyapunov.

Hahn in Stability of Motion 1967:

(cited from [15, p. 109]) [. . . ] if the domain of attraction is all of

Rn we speak of asymptotic stability in the whole, (cf. sec 2) or also

of global asymptotic stability [. . . ] •
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Global, i.e., in the Large or in the Whole ?

W. Hahn, in [14], explains the difference between asymptotic stability in

the large and asymptotic stability in the whole and warns against mistaken

translations:

(Cited and translated from [21, p. 149]) When addressing questions of
stability in the large[1] the interest [resides on] the estimate of the domain
of stability (in the case when there is no stability in the whole).

(Cited from [14, p. 8]) If relation (2.10) [here, (4)] is valid for all points
x◦ from which motions originate, we shall say that the equilibrium is
asymptotically stable in the large (Aizerman [1], Krasovsk̆ıi [21]). If re-
lation (2.10) [here, (4)] holds for all points of the phase space, the
equilibrium is said to be asymptotically stable in the whole (Barbashin
and Krasovsk̆ıi [6, 7]). La Salle [16] proposed “complete stability.” The
distinction between asymptotic stability in the large and asymptotic sta-
bility in the whole has often been obliterated by inaccurate translations of
the Russian terminology. However, it becomes important in cases where
Eq. (2.7) [ ẋ = f(t, x) ] is not defined for all points of the phase space.
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La Salle’s complete stability

(Cited from [16, p. 524]) For many systems it may be important to

assure that no matter how large the perturbation, or in a feedback

control system, regardless of the size of the error, the system tends

to return to its equilibrium state. This is asymptotic stability in the

large. In place of this awkward expression we shall say completely

stable. The system (2) [ ẋ = X(x) ] will be said to be completely

stable if the origin is stable and if every solution tends to the origin

as t tends to infinity. •
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Asymptotic stability in the large

Section “Stability in the large, in the whole” of Furasov’s book [12] is a rare

passage dealing with both concepts in certain rigour:

(Cited and translated from [12, p. 29])

D e f i n i t i o n 6.1. Let ∆◦ be a given positive number. The unper-

turbed motion Σ is called asymptotically stable in the large, if it is

stable a la Lyapunov and condition (2.5) [ x(x◦, t) → 0 as t →
∞ ] is satisfied for any initial perturbations x◦ from the region

|x◦| ≤ ∆◦ .
•

• Asymptotic stability in the large makes good sense when speaking of attrac-

tivity for a “large” domain as opposed to an inifinitessimal neighbourhood of

the origin, but not all of Rn.
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Asymptotic stability in the large

(Cited from [25, pp. 58-59, Theorems VI and VII] together)

Let V (x) be a scalar function with continuous first partial derivatives.

Let Ωl designate the region where V (x) < l. Assume that Ωl is

bounded and that within Ωl:

V (x) > 0 for x 6= 0 , (a)

V̇ (x) < 0 for all x 6= 0 in Ωl , (b)∗

then the origin is asymptotically stable, and above all, every solution

in Ωl tends to the origin as t→∞ (The last conclusion goes beyond

Lyapunov’s asymptotic stability theorem). •
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Asymptotic stability in the large

(Cited and translated from [6])

Let us consider the system

ẋ = − 2x

(1 + x2)2
+2y , ẏ = − 2y

(1 + x2)2
− 2x

(1 + x2)2
(2)

For this system the following positive-definite function will serve us

as a Lyapunov function:

v(x, y) = y2 +
x2

1 + x2
.

Next, we have

dv

dt
= − 4x2

(1 + x2)4
− 4y2

(1 + x2)2
.

[. . . ] we will show that on the plane (x, y) there is a set of instability

for the system (2). Indeed, consider a curve (γ) given by the equation

y = 2 +
1

1 + x2
. Calculating

dx

dt
and

dy

dt
along this curve, •
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Stable in the large, not in the whole
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Asymptotic stability in the whole
From E. A. Barbashin and N. N. Krasovsk̆ıi’s milestone paper [6]:

(Cited and translated from [6]) We say, that the trivial solution xi =

0 of systems (1)

[
dx

dt
= Xi(x1, x2, . . . , xn), i = 1, 2 , . . . , n, (1) ]

is asymptotically stable for any initial perturbations if it is stable
in the sense of Lyapunov (for sufficiently small perturbations) and
if each other solution xi(t) of systems (1) possesses the property
lim
t→∞

xi(t) = 0, i = 1, 2, . . . , n. •

(Cited from [14, p. 8]) [. . . ] the set of all points (x◦, t◦) from which
motions originate, satisfying the relation (2.10) [here, (4)], forms
the domain of attraction of the equilibrium. •
(Cited from [15, p. 109]) If the domain of attraction is all of Rn we
speak of asymptotic stability in the whole (cf. Sec. 2) or also of
global asymptotic stability. •
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Theorems on asymptotic stability in the whole

(Cited from [20, p. 124])
Theorem 4.2 Let x − 0 be an equilibrium point for [ ẋ = f(x) ].
Let V : Rn → R be a continuously differentiable function such that

V (0) = 0 and V (x) > 0, ∀ x 6= 0

|x| → ∞ ⇒ V (x)→∞
V̇ (x) < 0, ∀x 6= 0

then x = 0 is globally asymptotically stable. •

The previous classical theorem, as well as its converse, were originally con-
tributed by E. A. Barbashin and N. N. Krasovsk̆ıi in [6]:

(Cited and translated from [6, p. 454])
Theorem 1. If there exists a positively definite, infinitely large func-
tion v(x1, x2, . . . , xn) which has definitely negative derivative then
trivial solution of system (1) is asymptotically stable for any initial
perturbations. •
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Barbashin and Krasovsk̆ıi’s theorem
Original definition of GAS:

“We say, that the trivial solution xi = 0 of systems (1)

[
dx

dt
= Xi(x1, x2, . . . , xn), i = 1, 2 , . . . , n, (1) ]

is asymptotically stable for any initial perturbations if it is stable in the sense

of Lyapunov (for sufficiently small perturbations) and if each other solution

xi(t) of systems (1) possesses the property lim
t→∞

xi(t) = 0, i = 1, 2, . . . , n.”

“Theorem 4 (1952). Let exist an infinitely large definitely positive function

v(x1, x2, . . . , xn) and a set M such that

dv

dt
< 0 not in M ;

dv

dt
≤ 0 in M .

Let the set M have the property that on any intersection of the set v = c

(c 6= 0) and M there do not exist positive semi-trajectories of system (1). We

state that the trivial solution xi = 0 of system (1) is asymptotically stable

for any initial perturbations.”
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Barbashin and Krasovsk̆ıi’s theorem

Illustrative example: Let us consider a system of two differential equa-

tions described by [6, Equation (1)], i.e.

dx

dt
= Xi(x1, x2), i = 1, 2 .

Assume that there exists:

• a positive definite, radially unbounded (infinitely large) function

v(x1, x2)

• a continuous function w such that w(0) = 0, w(x1) > 0 for all

x1 6= 0 and

dv

dt
=

∂v

∂x1

X1(x1, x2) +
∂v

∂x2

X2(x1, x2)

= −w(x1) .
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Barbashin and Krasovsk̆ıi’s theorem

v
=
c

x2

x1

To apply [6, Theorem 4]:

• we see that M corresponds to the vertical axis of the phase space
frame;

• we must verify that the origin is the only element of the intersection
M ∩ {v = c} that contains continuous positive semi-trajectories

(i.e. functions t 7→ x with t ≥ 0)
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Barbashin and Krasovsk̆ıi’s theorem

v
=
c ∗

x∗2•

−x∗2•

x2

x1

To apply [6, Theorem 4]:

• otherwise, we must verify that the largest invariant set E ⊂ Rn

contained in M ∩ {v = c} is the origin.

• For this, fix c = c∗ > 0 arbitrarily; in this case, M ∩ {v = c∗} =
{(0,−x∗2), (0, x∗2)} with x∗2 6= 0;

• does 0 = X2(0, x2) has other solutions than {x2 = 0} ?

NO =⇒ GAS
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La Salle’s “parallel” theorem

La Salle (1960) stated (without credit to Barbashin, Krasovsk̆ıi):

“Theorem 3. Let V (x) be a scalar function with continuous first par-
tials for all x. Assume that

1) V (x) > 0 for all x 6= 0

2) V̇ (x) ≤ 0 for all x.

Let E be the set of all points where V̇ (x) = 0, and let M be the largest
invariant set contained in E. Then every solution of (2) [ ẋ = X(x) ]
bounded for t ≥ 0 approaches M as t→∞.”

• Note that the invariance principle does not establish asymptotic sta-
bility but guarantees the attractivity of the set M , assumed invariant.

• in the particular case where M = {0} and V is radially unbounded, we

recover the well-known La Salle’s theorem for global asymptotic stability

and which is equivalent to Barbashin/Krasovsk̆ıi’s 1954 theorem.
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Example: pendulum
Set-point control: Consider the pendulum equation with a
PD-plus-gravity-precompensation controller, i.e.

m`2q̈ +mg` sin(q) = −kpq̃ − kdq̇ +mg` sin(qd) .

The state-space representation is[
ẋ1

ẋ2

]
=

 x2
1

m`2
(−kpx1 − kdx2 −mg`[sin(x1 + qd)− sin(qd)])


We see that

V (x1, x2) =
m`2

2
x22 +

kp
2
x21 +mg`[cos(qd)− cos(x1 + qd)− sin(qd)x1]

V̇ (x1, x2) = −kdx22 .
Define M := {x2 = 0}∩{x1 ∈ R}. GAS follows since x1 = 0 is the only solution of[

0

0

]
=

 0
1

m`2
(−kpx1 −mg`[sin(x1 + qd)− sin(qd)])


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Example: pendulum

Adaptive set-point control: Consider the pendulum equation with an adap-

tive PD-plus-gravity-compensation controller, i.e.

m`2q̈ +mg` sin(q) = −kpq̃ − kdq̇ + m̂(t)g` sin(q)

˙̂m = −g` sin(q)q̇

The state-space representation isẋ1
ẋ2

 =

 x2
1

m`2
(−kpx1 − kdx2 − [m− m̂(t)]g` sin(x1 + qd))


We see that

V (x1, x2) =
m`2

2
x22 +

kp
2
x21 +

1

2
(m̂(t)−m)2

V̇ (x1, x2) = −kdx22 .

Define M := {x2 = 0} ∩ {x1 ∈ R} ∩ {(m̂−m) ∈ R}.
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Example: pendulum
Adaptive set-point control: Consider the pendulum equation with an adaptive
PD-plus-gravity-compensation controller, i.e.

m`2q̈ +mg` sin(q) = −kpq̃ − kdq̇ + m̂(t)g` sin(q)

˙̂m = −g` sin(q)q̇

The state-space representation is[
ẋ1

ẋ2

]
=

 x2
1

m`2
(−kpx1 − kdx2 − [m− m̂(t)]g` sin(x1 + qd))


Define M := {x2 = 0} ∩ {x1 ∈ R} ∩ {(m̂−m) ∈ R}.

The point x1 = 0, m̂ = m ∈M is not the only solution of[
0

0

]
=

 0
1

m`2
(−kpx1 − [m− m̂(t)]g` sin(x1 + qd)])


For example: take qd = π/4, x1 = π/4. Then, m̂(t) =

kpπ

4g`
+m.
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Time-varying periodic systems

Extensions of [6, Theorem 4], to the case of non-autonomous periodic sys-

tems, have also been published; the first is probably due to N. N. Krasovsk̆ıi:

(Cited from [22, Chapter 3, p. 66-67])

[. . . ] we consider the more general case in which the equations

(14.1)
dxi
dt

= Xi(x1, . . . , xn, t) (i = 1, . . . , n)

of [the] perturbed motion are such that the right members Xi(x, t)

are periodic functions of the time t with period ϑ, or do not depend

explicitly on the time t. We further assume that the functions are

defined in the region

(14.2) ‖x‖ < H, −∞ < t <∞ (H =const. or H =∞)

•
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Time-varying periodic systems

Theorem 14.1. Suppose the equations of perturbed motion (14.1) enjoy

the properties that

(i) there exists a function v(x, t) which is periodic in the time t with

period ϑ or does not depend explicitly on the time;

(ii) v(x, t) is positive definite;

(iii) v(x, t) admits an infinitely small upper bound in the region (14.2);

(iv) sup (v in the region ‖x‖ ≤ H◦, 0 ≤ t < ϑ)

< inf (v for ‖x‖ = H1) (H◦ < H1 < H);

(v) dv/dt ≤ 0 in the region (14.2);

(vi) the set M of points at which the derivative dv/dt is zero contains no

nontrivial half trajectory x(x◦, t, t), (0 < t <∞), of the system (14.1)

Under these conditions, the null solution x = 0 is asymptotically stable and

the region ‖x‖ ≤ H◦, lies in the region of attraction of the point x = 0.
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Time-varying periodic systems
Modern formulations of the latter can be found for instance in [65, p. 179];

specifically, [65, Theorem 5.3.79], which is called by the author “Krasovsk̆ıi-

La Salle’s theorem”, corresponds to [22, Theorem 14.1] given above, to the

case when H =∞, i.e. the case of global asymptotic stability:

(Cited from [65, p. 179])

79 Theorem (Krasovskii-LaSalle) Suppose that the system (5.1.1)

[ ẋ(t) = f [t,x(t)], t ≥ 0 ] is periodic. Suppose that there exists

a C1 function V : R+ × Rn → R having the same period as the

system such that (i) V is a pdf [ positive definite ] and is radially

unbounded, and (ii)

80 V̇ (t,x) ≤ 0, ∀ t ≥ 0, ∀ x ∈ Rn .
Define

81 R = {x ∈ Rn : ∃ t ≥ 0 such that V̇ (t,x) = 0} ,
and suppose R does not contain any trajectories of the system other

than the trivial trajectory. Then the equilibrium 0 is globally uni-

formly asymptotically stable. •
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Uniform Stability

Uniform stability is defined as follows – see the equivalent definitions given

in [65, p. 137], [54, p. 7], [2, p. 143], [20, Definition 4.4., p. 149]:

Definition 11 (Uniform stability) The origin of the system (1) is said to

be uniformly stable if for each ε > 0 there exists δ(ε) > 0 such that

|x◦| ≤ δ =⇒ |x(t; t◦, x◦)| ≤ ε (#)

for all t ≥ t◦ and all t◦ ≥ 0 . •

Different authors attribute this property to Persidsk̆ıi: Antosiewicz, in [2],

attributes it to [51] while Rouche et al, in [54], attribute it to [49]. Persidsk̆ıi

himself, in [51] refers to [49]:
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Uniform Stability
(Cited and translated from [49])
Assume that xs = fs(t, t1), (s = 1, 2, . . . , n) is a system of continuous
functions that satisfies the following system of differential equations of
perturbed motion

dxs
dt

= ys(x1, x2, . . . , xn, t) (s = 1, 2, . . . , n) (1)

and which takes, for t = t1 corresponding values εs [i.e., with initial
conditions t1 and xs(t1) = εs].

If the functions xs = fs(t, t1) are such that for any arbitrarily small
number H > 0 there exists a number h > 0 such that for all values
t ≥ t1 we will have

(x2
1 + x2

2 + · · ·+ x2
n) ≤ H, (2)

if
(ε21 + ε22 + · · ·+ ε2n) ≤ h (3)

then the unperturbed motion will be called s t a b l e. [. . . ]
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Uniform Stability

If the functions xs = fs(t, t1) are such that for any arbitrarily small
number H > 0 there exists a number h > 0 such that for all values
t ≥ t1 we will have

(x21 + x22 + · · ·+ x2n) ≤ H, (2)

if
(ε21 + ε22 + · · ·+ ε2n) ≤ h (3)

[. . . ] In general, the number h is a function of t1 and H. In the
case when for all values t1 ≥ t◦ there exists a number h, which is
independent of t1, we will call the unperturbed motion u n i f o r m l y
s t a b l e. •

• Persidsk̆ıi does not assume the usual local Lipschitz, uniform in t, property
on the function ys(· · · , t) but that there exist continuous positive functions
As(t) such that

|ys(x1, x2, . . . , xn, t)− ys(x′1, x′2, . . . , x′n, t)| ≤ As(t)(|x1 − x′1|+ · · ·+ |xn − x′n|)

and ys are continuous.
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Uniform Stability

Starting with W. Hahn, the notation from Definition 8 has been used. More

precisely, we have the following:

(Cited from [14, p. 62])

Theorem 17.1: The equilibrium of differential equation (2.7) [ ẋ =

f(x, t), f(0, t) = 0, f ∈ E ] is uniformly stable if and only if there

exists a function ρ(r) with the following properties:

(a) ρ(r) is defined, continuous, and monotonically increasing in an

interval 0 ≤ r ≤ r1;

(b) ρ(0) = 0; the function ρ, therefore, belongs to the class K;

(c) the inequality

|p(t, x◦, t◦)| ≤ ρ(|x◦|)

is valid for |x◦| < r1.
•



69

Uniform Stability

Hahn attributes the following result to [50]:

(Cited from [14]) Theorem 17.6 If there exists a positive definite
decrescent Liapunov function v such that its total derivative v̇ for
(2.7) is negative semi-definite, then the equilibrium is stable. •

The sufficiency theorem cited above is also attributed by Rouche et al [54] to

K. P. Persidsk̆ıi –[50] while Antosiewicz [2] cites [51]. Indeed, Persidsk̆ıi gives

in, [50] and for the first time, necessary and sufficient conditions for uniform

stability. That is, Persisdsk̆ıi’s original statement is more general than that

contained in [14, Theorem 17.6] however, its precise for mulation requires

the introduction of other definitions†

†It is worth pointing out that among these definitions, Persidsk̆ıi uses the
terminology “class L” function however, Persidsk̆ıi’s definition is different from
“Hahn’s” definition of class L function, which is commonly used nowadays.
that we do not detail here.
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Uniform global stability
Thus, uniform global stability is defined as follows:

(Cited from [24, p. 490])

Definition A.4 The equilibrium point x = 0 of [ ẋ = f(x, t) ] is

• uniformly stable, if there exists a class K function γ(·) and a
positive constant c independent of t◦, such that

|x(t)| ≤ γ(|x(t◦)|) , ∀ t ≥ t◦ , ∀ x(t◦) | |x(t◦)| < c; (A.3)

• globally uniformly stable, if (A.3) is satisfied with γ ∈ K∞ for
any initial state x(t◦).

•

This is equivalent to Hahn’s uniform stability in the whole:

(Cited from [14, p. 62])

Definition 17.2: The equilibrium of (2.7) [ ẋ = f(x, t), f(0, t) =

0, f ∈ E ] is said to be uniformly stable in the whole if the assump-
tion of Theorem 17.1 are satisfied for every arbitrarily large r1. •
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Uniform Asymptotic Stability
Uniform asymptotic stability appears, implicitly, in many articles of I. G.
Malkin between 1940 and 1955 in the context of stability with respect to
constantly-acting disturbances. Hahn attributes the following to Malkin:

(Cited from [14])
Definition 17.4 (Malkin [20]): The equilibrium of (2.7) is called
uniformly asymptotically stable if

1. the equilibrium is uniformly stable

2. for every ε > 0 a number τ = τ(ε) depending only on ε, but
not on the initial instant t◦ can be determined such that the
inequality

|p(t, x◦, t◦)| < ε (t > t◦ + τ)

holds, provided x◦ belongs to a spherical domain <η whose radius η
is independent of ε. •

• Hahn’s reference “Malkin [20]” corresponds to the paper [39], on the con-

verse Lyapunov theorem for uniform asymptotic stability and on stability with

respect to constantly-acting perturbations.
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Uniform Attractivity

• The second part of [14, Definition 17.4] is often referred to as uniform

attractivity as a qualifier for the equilibrium; the following interesting

characterisation is seemingly due to Hahn:

(Cited from [14, p. 64]) Necessary and sufficient for the second

condition of Definition 17.4 is the existence of a function σ(r)

with the following properties:

(a) σ(r) is defined, continuous, and monotonically decreasing, for

all r ≥ 0,

(b) lim
r→∞

σ(r) = 0,

(c) provided the initial points belong to a fixed spherical domain

<η, the relation

|p(t, x◦, t◦)| ≤ σ(t−t◦) (17.6)

holds.
•
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Uniform Attractivity

(Cited from [14, p. 64])

Theorem 17.4 (Hahn): Necessary and sufficient for uniform asymp-

totic stability of the equilibrium is the existence of two functions κ(r)

and ϑ(r) with the following properties:

(a) κ(r) satisfies assumptions (a) and (b) of Theorem 17.1,

(b) ϑ(r) satisfies the corresponding assumptions of Theorem 17.3;

(c) in addition, the inequality

|p(t, x◦, t◦)| ≤ κ(|x◦|)ϑ(t−t◦) (17.7)

holds, provided that the initial points x◦ belong to a fixed spher-

ical domain <η.

•
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Uniform Asymptotic Stability in the Whole
(Cited and translated from [7, p. 346])
We call the solution x1 = . . . = xn = 0 of system (1)

[
dxi
dt

= Xi(x1, · · · , xn, t) (i = 1, · · · , n) (1) ]

[is] uniformly [asymptotically] stable in the whole, if for any numbers R1 > 0
and R2 > 0 one can find a number T (R1, R2), depending continuously only
on R1 and R2, such that, any solution xi(x10, . . . xn0, τ◦, t) (i = 1, . . . , n)
with initial values for t = τ◦ ≥ t◦ laying in the region

x2
10 + · · ·+ x2

n0 ≤ R2
1 ,

satisfies inequality

x2
1 + · · ·+ x2

n < R2
2 for τ◦ + T (R1, R2)

and at same time for any number R1 > 0 there exists a number R2 = F (R1),

depending continuously only on R1, such that any trajectory starting from

the interior of a sphere of radius R1 does not escape from a sphere of radius

R2 as time passes.
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Uniform Asymptotic Stability in the Whole

• Note that the term “asymptotically” is omitted by the authors

• The first part of the definition corresponds to uniform global attractivity

while the second part corresponds to uniform boundedness of solutions

hence, the constants R1 and R2 are not the same in each of the two

parts of the definition

• Furhtermore, from the rigorous viewpoint that characterises modern lit-

erature, the definition above actually does not explicitly include uniform

stability

• In addition, it is not made explicit whether the function F is radially

unbounded.
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Uniform Asymptotic Stability in the Whole

Barbashin and Krasovsk̆ıi’s formulation is closely followed (and formalised)

by Hahn –cf. [14, Definition 17.5]:

(Cited from [14, p. 64])

Definition 17.5 (Barbashin and Krasovskii [2]): The equilibrium

of differential equation (2.7) is said to be uniformly asymptotically

stable in the whole, if the following two conditions are satisfied:

(a) The equilibrium is uniformly stable in the whole;

(b) for any two numbers δ1 > 0 and δ2 > 0 there exists a number

τ(δ1, δ2) such that

|p(t, x◦, t◦)| < δ2

if t ≥ t◦ + τ(δ1, δ2) and |x◦| < δ1. •
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Two definitions of UGAS

ẋ = f(t, x) . (6)

Definition 12 ([54, p. 10] a, [42, p. 356], [3, Definition 3.6, p. 80], [65,

Definition 5.1.38, p. 143]) The origin of (6) is said to be uniformly globally

asymptotically stable (UGAS) if it is uniformly stable –cf. Definition 11 and

uniformly globally attractive, i.e. if for any r > 0 and σ > 0 there exists

T (σ, r) > 0 such that, for all t◦ ≥ 0,

|x◦| ≤ r =⇒ |x(t; t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T . •

Definition 13 ( [14, Defin. 17.5, p. 64], [20, p. 150], [17, Defin. 2.7, p. 38] )

The origin of the system (6) is uniformly globally asymptotically stable if

1. it is uniformly globally stable, i.e. there exists γ ∈ K∞ such that

|x(t)| ≤ γ(|x◦|) (7)

2. it is uniformly globally attractive. •
aThe authors attribute this definition to [6] which concerns only autonomous systems.
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Lyapunov Stability

[Equivalent characterisation]

Definition 13 (stability) The origin of ẋ = f(t, x) is said to be

• stable if for each pair (t◦, ε), s.t. t◦ ≥ 0, ε > 0 there exists δ(t◦, ε) > 0 such

that

|x◦| ≤ δ =⇒ |x(t; t◦, x◦)| ≤ ε ∀ t ≥ t◦ ≥ 0 . (8)

• uniformly stable if for each ε > 0 there exists δ(ε) > 0 such that (8) holds

• uniformly globally stable if δ(ε) can be chosen such that δ(ε)→∞ as ε→∞

Definition 14 (Uniform/global/stability) The origin of ẋ = f(t, x) is:

• stable if and only if there exist r > 0 and, for each t◦≥ 0, γ ∈ K such that

|x◦| ≤ r ⇒ |x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦, (9)

• uniformly stable if and only if there exist r > 0 and γ ∈ K such that (9) holds;

• uniformly globally stable if and only if there exists γ ∈ K∞ s.t.

|x(t, t◦, x◦)| ≤ γ(|x◦|) ∀ t ≥ t◦ ≥ 0, x◦ ∈ Rn
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Lyapunov’s Asymptotic Stability

Definition 15 (Uniform/global/attractivity) The origin of the system ẋ = f(t, x)

is said to be attractive if there exists r > 0 and, for each t◦ ≥ 0 and σ > 0 there

exists T > 0 such that

|x◦| ≤ r =⇒ |x(t, t◦, x◦)| ≤ σ ∀ t ≥ t◦ + T . (10)

Moreover, it is uniformly attractive if T is independent of t◦ that is, if there exists

r > 0 and, for each σ > 0 there exists T > 0 such that (10) holds.

Finally, it is said to be uniformly globally attractive if for each r > 0 and σ > 0 there

exists T > 0 such that (10) holds. •

Definition 16 (Uniform Global Asymptotic Stability) The origin of the system

ẋ = f(t, x) is said to be uniformly globally asymptotically stable if it is

• (locally) uniformly stable |x(t)| ≤ γ(|x◦|), γ ∈ K;

• the solutions are uniformly globally bounded |x(t)| ≤ R(r) for any r > 0;

• the origin is uniformly globally attractive. •
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Uniformity implies Rosbustness

Definition 17 (Total stabilitya) The origin of of ẋ = f(t, x, 0), is said to be totally

stable if, for the system ẋ = f(t, x, u) small bounded inputs u(t, x) and small initial

conditions x◦ = x(t◦), yield small state trajectories for all t ≥ t◦, i.e., if for each

ε > 0 there exists δ > 0 such that

max {‖x◦‖, ‖u‖∞} ≤ δ =⇒ ‖x(t, t◦, x◦, u)‖ ≤ ε ∀ t ≥ t◦ ≥ 0 . (11)

•

(Non)-uniform, even exponential, stability does not guarantee robustness in the sense

above –see[5, Ch. 3, sec. 5]

ẋ = −(a− sin ln(t+ 1)− cos ln(t+ 1))x,

where 1 < a < 1 + (1/2)e−π. It should be noted that even though the solutions of

this system are exponentially convergent, the origin of the system is not uniformly

stable.
aThe definition provided here, is a modern version of total stability, more suitable for

the purposes of this paper. The notion of total stability was originally introduced in [38].
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Example 3 (Panteley, Teel ’98) Consider the system ẋ = f(t, x) with

f(t, x) =

 −a(t)sgn(x) if |x| ≥ a(t)

−x if |x| ≤ a(t)
(12)

and a(t) =
1

t+ 1
. This system has the following properties:

1. The function f(t, x) is globally Lipschitz in x, uniformly in t and the system is

UGS with linear gain equal to one.

2. For each r > 0 and t◦ ≥ 0 there exist strictly positive constants κ and λ such

that for all t ≥ t◦ and |x(t◦)| ≤ r

|x(t)| ≤ κ|x(t◦)|e−λ(t−t◦) (13)

3. The origin is not totally stable. Indeed, for any δ � 1, there exist (t◦, x◦) ∈
×Br, with δ > x◦ > a(t◦), s.t., the solution of

ẋ = [−a(t) + δ]sgn(x)

grows unboundedly. •
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 −a(t)sgn(x(t)) if |x(t)| ≥ a(t)

−x if |x(t)| ≤ a(t)
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Conclusions

• A number of stability definitions have been proposed in the literature.

Sometimes, misconceptions of stability have resulted from wrong trans-

lations and mis-use of terminology.

• Only via a careful book-keeping and a “return to the sources” clarifica-

tions may be brought up.

• Lagrange-Dirichlet’s stability is reminiscent of stability with respect to

part of coordinates;

• Lyapunov’s stability is a much broader concept than usually considered;

• Two definitions of uniform global asymptotic stability have been used;

only one of which yields converse results;

• Asymptotic stability in the large and global asymptotic stability are not

synonims;



“Des lecteurs attentifs, qui se communiquent leurs pensées,

vont toujours plus loin que l’auteur”†

—Voltaire, 1763.

†Attentive readers, which communicate their thoughts always go beyond the author
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