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Outline

◮ What is convergence?

◮ Lyapunov characterisation + sufficient conditions

◮ Properties of convergent systems

◮ Related stability notions

◮ Applications (tracking, synchronization, output regulation,
model reduction, steady-state analysis, extremum seeking, ...)

◮ Conclusions & Open issues
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Steady-state dynamics of systems with inputs

For the solutions of nonlinear systems with time-varying inputs we
may have that:

◮ Solutions may grow unbounded for t → ∞
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Steady-state dynamics of systems with inputs

For the solutions of nonlinear systems with time-varying inputs we
may have that:

◮ Solutions may grow unbounded for t → ∞

◮ Bounded input ⇒ Bounded steady-states (e.g. Input-to-State
Stability, Sontag, 1995)
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Steady-state dynamics of systems with inputs

For the solutions of nonlinear systems with time-varying inputs we
may have that:

◮ Solutions may grow unbounded for t → ∞

◮ Bounded input ⇒ Bounded steady-states (e.g. Input-to-State
Stability)

◮ Bounded input ⇒ Unique bounded steady-state solution
(Convergence)
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A bit of History (Russia-1960’s)

Boris Pavlovich Demidovich
Russia, 1906-1977)

Fields of interest: Mathematics

Known for his work on the
stability of dynamical systems
and in particular the
convergence property

(

Vladimir A. Yakubovich
Russia)

Fields of interest:
- Control theory
- Stability theory

Known for his work on absolute
stability theory

(

V.A. Pliss
Russia)

Fields of interest:
- Dynamics
- Stability theory

Known for his work on stability
theory for dynamical systems

(

Unique steady-state response Convergent Systems

V.A. Pliss,  B.P. Demidovich:Definition
of convergent systems & sufficient
conditions

V.A.Yakubovich: Lur'e-type systems
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Convergent Systems: Definition

Definition
(according to Demidovich 1961,1967):
System ẋ = F (x , t) is called

x̄(t)

◮ Convergent if:

1. there exists a solution x̄(t) defined and bounded for all t ∈ R

2. x̄(t) is globally asymptotically stable

◮ Uniformly (exponentially) convergent if additionally:
◮ x̄(t) is globally uniformly asymptotically (exponentially)

stable

◮ x̄(t) is called a steady-state solution

◮ x̄(t) is unique if the system is uniformly convergent
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Convergent Systems: Definition

Definition
(according to Demidovich 1961,1967):
System ẋ = F (x ,w(t)) is called

x̄w (t)

◮ Convergent for a class of inputs if:
for any w(t) from that class

1. there exists a solution x̄w (t) defined and bounded for all
t ∈ R

2. x̄w (t) is globally asymptotically stable

◮ Uniformly (exponentially) convergent if additionally:
◮ x̄w (t) is globally uniformly asymptotically (exponentially)

stable

◮ x̄w (t) is called a steady-state solution

◮ x̄w (t) is unique if the system is uniformly convergent
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Convergent Systems: Examples

◮ Linear Systems:

ẋ = Ax + Bw(t)

◮ Global Asymptotic Stability (GAS) of x = 0 for w(t) = 0
=⇒ Convergence for all bounded w(t)

1. Unique solution x̄w (t) bounded for t ∈ [−∞,∞]:

x̄w (t) =

t
∫

−∞

eA(t−s)Bw(s)ds

2. x̄w (t) is globally exponentially stable ( due to Hurwitz A +
linearity)

◮ For linear systems: GAS for the unperturbed system ⇒
1. Input-to-state stability: bounded steady-states
2. Exponential convergence: a unique bounded steady-state
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Convergent Systems: Examples

◮ Nonlinear Systems: Global Asymptotic Stability (GAS) of
x = 0 for w(t) = 0 6=⇒ Convergence for all bounded w(t)
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Convergent Systems: Examples

◮ Nonlinear Systems: Global Asymptotic Stability (GAS) of
x = 0 for w(t) = 0 6=⇒ Convergence for all bounded w(t)

◮ Counter example:

ẋ = −a(x) + w , x ,w scalar

1. For w = 0: the equilibrium
x = 0 is globally exponentially
stable

x

)(xa
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Convergent Systems: Examples

◮ Nonlinear Systems: Global Asymptotic Stability (GAS) of
x = 0 for w(t) = 0 6=⇒ Convergence for all bounded w(t)

◮ Counter example:

ẋ = −a(x) + w , x ,w scalar

1. For w = 0: the equilibrium
x = 0 is globally exponentially
stable

2. For w = w∗: three equilibria ⇒
not convergent!
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Convergent Systems: Examples

◮ Nonlinear Systems: Global Asymptotic Stability (GAS) of
x = 0 for w(t) = 0 6=⇒ Convergence for all bounded w(t)

◮ Counter example:

ẋ = −a(x) + w , x ,w scalar

1. For w = 0: the equilibrium
x = 0 is globally exponentially
stable

2. For w = w∗: three equilibria ⇒
not convergent!

x

)(xa

*w

Stronger conditions for convergence
of nonlinear systems are needed
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Lyapunov Characterisation (Rüffer, SCL2013)

Consider a system of the form ẋ = f (t, x) and assume that

◮ f is continuous in (t, x) and C1 with respect to x

◮ the Jacobian ∂
∂x

f (t, x) is bounded, uniformly in t

If system ẋ = f (t, x) is globally uniformly convergent, then there
exist a V ∈ C1, αi ∈ K∞, i = 1, 2, 3, and c ≥ 0 s.t.

α1(‖x − x̄(t)‖) ≤ V (t, x) ≤ α2(‖x − x̄(t)‖) (1)

∂V

∂t
+

∂V

∂x
f (t, x) ≤ −α3(‖x − x̄(t)‖) (2)

V (t, 0) ≤ c , t ∈ R (3)
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Lyapunov Characterisation (Rüffer, SCL2013)

Consider a system of the form ẋ = f (t, x) and assume that

◮ f is continuous in (t, x) and C1 with respect to x

◮ the Jacobian ∂
∂x

f (t, x) is bounded, uniformly in t

If system ẋ = f (t, x) is globally uniformly convergent, then there
exist a V ∈ C1, αi ∈ K∞, i = 1, 2, 3, and c ≥ 0 s.t.

α1(‖x − x̄(t)‖) ≤ V (t, x) ≤ α2(‖x − x̄(t)‖) (1)

∂V

∂t
+

∂V

∂x
f (t, x) ≤ −α3(‖x − x̄(t)‖) (2)

V (t, 0) ≤ c , t ∈ R (3)

Conversely, if V ∈ C1, αi ∈ K∞, i = 1, 2, 3, and c ≥ 0 are given
such that for some trajectory x̄ estimates (1)–(3) hold, then system
ẋ = f (t, x) must be globally uniformly convergent
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Sufficient Conditions (Pavlov, Birkhäuser, 2005)

◮ Consider a perturbed nonlinear system

ẋ = f (x ,w(t)), f (0, 0) = 0

◮ If there exist V1(x1, x2), V2(x) ∈ C1, α3, ρ ∈ K and α1,
α2, α4, α5 ∈ K∞ such that

1. we have incremental stability:

α1(‖x1 − x2‖) ≤ V1(x1, x2) ≤ α2(‖x1 − x2‖)

V̇1 =
∂V1

∂x1

f (x1,w) +
∂V1

∂x2

f (x2,w) ≤ −α3(‖x1 − x2‖)

2. there exists a compact positively invariant set:

α4(‖x‖) ≤ V2(x) ≤ α5(‖x‖)

V̇2 =
∂V2

∂x
f (x ,w) ≤ 0, for ‖x‖ ≥ ρ(‖w‖)

then the system is globally uniformly convergent
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Sufficient Conditions (Special Cases)

◮ Consider the system:

ẋ = f (x ,w(t)), x ∈ R
n, w(t) ∈ PC(W)

with W ⊂ R
m and PC(W) bounded, piece-wise continuous

inputs and with |f (0,w)| ≤ c < ∞, f (x ,w) continuously
differentiable with respect to x and continuous with respect to
w

◮ Demidovich condition: (Demidovich, 1961,1967)

If there exist positive definite matrices P = PT > 0 and
Q = QT > 0 such that

P
∂f

∂x
+

∂f

∂x

T

P ≤ −Q, ∀x ∈ R
n, w ∈ W ⊂ R

m

then, the system is globally exponentially convergent for all
bounded w(t)
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Demidovich condition: Example

◮ Consider the system:

ẋ1 = −x1 + wx2 + w

ẋ2 = −wx1 − x2

◮ Jacobian of the vectorfield:

∂f

∂x
=

[

−1 w

−w −1

]

◮ Satisfies Demidovich condition
with P = I and Q = 2I :

∂f

∂x
+

∂f

∂x

T

= −2I < 0

◮ So, the system is globally
exponentially convergent
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Demidovich condition: Example

◮ Consider the system:

ẋ1 = −x1 + wx2 + w

ẋ2 = −wx1 − x2

◮ Jacobian of the vectorfield:

∂f

∂x
=

[

−1 w

−w −1

]

◮ Satisfies Demidovich condition
with P = I and Q = 2I :

∂f

∂x
+

∂f

∂x

T

= −2I < 0

◮ So, the system is globally
exponentially convergent

◮ Quasi-periodic excitation
w(t) =

∑

2

i=1
Ai sin(ωi t)

0 5 10 15
−1

−0.5

0

0.5

1

1.5

x 1

Time

Solutions converge to the
same steady-state solution
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Sufficient Conditions (Special Cases)

◮ Consider a Lur’e-type system:

ẋ = Ax + Bu + Bww(t)

u = −ϕ(Cx), y , u ∈ R

◮ Circle-criterion-LIKE condition
(Yakubovich, 1964):
If

1. Incremental sector condition:
0 ≤ ϕ(y2)−ϕ(y1)

y2−y1

≤ µ ∀y1, y2

2. Re{C (jωI − A)−1B} ≥ − 1

µ

3. A is Hurwitz

-

+

y = Cx

ϕ
ϕ(y)

ẋ = Ax + Bu + Bww(t)

y = Cx

w(t)

u = −ϕ(y)
u

y

ϕ(y)

0 ≤ ∂ϕ
∂y

≤ µ

then the system is globally exponentially convergent
with respect to w(t)
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Convergence of Discrete-time Systems

Definition (Pavlov, van de Wouw, CDC2008, TAC2012):

◮ A nonlinear discrete-time system:

x[k + 1] = f (x[k ], k)

is called uniformly (exponentially) convergent if
◮ there exists a unique solution x̄ [k ] that is defined and

bounded on Z

◮ x̄ [k ] is globally uniformly (exponentially) asymptotically stable

◮ The solution x̄ [k ] is called a steady-state solution
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Convergence of Discrete-time Systems

Sufficient Condition (Pavlov, van de Wouw, CDC2008,
TAC2012):

◮ Consider nonlinear discrete-time system:

x[k + 1] = f (x[k ], k)

with a Lipschitz continuous right-hand side

◮ If
◮ |f (x1, k)− f (x2, k)|P ≤ λ|x1 − x2|P

for all x1, x2 ∈ R
n, k ∈ Z, P = PT > 0 and 0 < λ < 1

◮ supk∈Z
|f (0, k)|P =: C < +∞

Then
the system is globally exponentially convergent
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Conditions for other classes of systems

◮ Other sufficient conditions for convergence:
◮ Piecewise affine systems (Pavlov et. al., IJC2007, van

de Wouw et. al. Automatica2008)

◮ Measure differential inclusions (Leine, van de Wouw,
IJBC2008)

◮ Complementarity Systems (Camlibel, van de Wouw,
CDC2007)

◮ Switched Systems (van den Berg et. al., ADHS2006)

◮ Interconnections of convergent systems and LMI-based
conditions (Pavlov et. al., Birkhäuser 2005)

◮ Time-varying Lyapunov conditions for convergence
(Pogromski et. al., SCL2013)

◮ Delay differential equations (Pola et. al. 2009, Chaillet
et. al., CDC2013)
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Properties of Convergent Systems
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1. There exists a (unique) globally asymptotically stable
solution, bounded for t ∈ [−∞,∞]
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Constant disturbance Convergent System Constant steady-state
response

1. There exists a (unique) globally asymptotically stable
solution, bounded for t ∈ [−∞,∞]

2. Constant inputs ⇒ constant steady-state solutions
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1. There exists a (unique) globally asymptotically stable
solution, bounded for t ∈ [−∞,∞]

2. Constant inputs ⇒ constant steady-state solutions
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Properties of Convergent Systems
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Periodic disturbance
(Period time T) Convergent System Periodic steady-state

response (Period time T)

1. There exists a (unique) globally asymptotically stable
solution, bounded for t ∈ [−∞,∞]

2. Constant inputs ⇒ constant steady-state solutions

3. Period-T inputs ⇒ period-T steady-state solutions
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Properties of Convergent Systems

)(tw
)(tx

))(,( twxFx =

Convergent SystemPeriodic disturbance
(Period time T)

Periodic steady-state
response (Period time T)

1. There exists a unique globally asymptotically stable
solution, bounded for t ∈ [−∞,∞]

2. Constant inputs ⇒ constant steady-state solutions

3. Period-T inputs ⇒ period-T steady-state solutions



18/52
Input-to-State Convergence

Definition (Pavlov et. al., 2005):
System ẋ = F (x ,w(t)) is called Input-to-State Convergent if:

1. it is uniformly convergent

2. for any w(t) bounded for t ∈ (−∞,+∞), it is input-to-state
stable (ISS) with respect to the steady-state solution x̄w (t),

i.e. ∃ a KL-function β(r , s) and a K∞-function γ(r) such
that any solution x(t) corresponding to some perturbed input
ŵ(t) := w(t) + ∆w(t) satisfies

|x(t)−x̄w (t)| ≤ β(|x(t0)−x̄w (t0)|, t−t0)+γ( sup
t0≤τ≤t

|∆w(τ)|)
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Input-to-State Convergence

◮ Input-state convergence is based on the notion of
input-to-state stability

◮ Guarantees robustness of the steady-state behaviour in
the face of perturbations to the time-varying input



18/52
Input-to-State Convergence

◮ Input-state convergence is based on the notion of
input-to-state stability

◮ Guarantees robustness of the steady-state behaviour in
the face of perturbations to the time-varying input
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Input-to-State Convergence

◮ Input-state convergence is based on the notion of
input-to-state stability

◮ Guarantees robustness of the steady-state behaviour in
the face of perturbations to the time-varying input
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Input-to-State Convergence

◮ Input-state convergence is based on the notion of
input-to-state stability

◮ Guarantees robustness of the steady-state behaviour in
the face of perturbations to the time-varying input
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Input-to-State Convergence

◮ Input-state convergence is based on the notion of
input-to-state stability

◮ Guarantees robustness of the steady-state behaviour in
the face of perturbations to the time-varying input
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Interconnection Properties of Convergent Systems

◮ Parallel connection of uniformly
convergent systems is convergent
(Pavlov et. al. Birkhäuser 2005)
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Interconnection Properties of Convergent Systems

◮ Parallel connection of uniformly
convergent systems is convergent
(Pavlov et. al. Birkhäuser 2005)

w(t)
Σ1

Σ2

x1

x2

◮ Series connection of input-to-state
convergent systems is
input-to-state convergent (Pavlov
et. al. Birkhäuser 2005)
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Interconnection Properties of Convergent Systems

◮ Feedback connection of
◮ an input-to-state convergent

system Σ1 and
◮ a uniformly asymptotically stable

system Σ2

is input-to-state convergent (Pavlov
et. al. Birkhäuser 2005)
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Interconnection Properties of Convergent Systems

◮ Feedback connection of
◮ an input-to-state convergent

system Σ1 and
◮ a uniformly asymptotically stable

system Σ2

is input-to-state convergent

w(t)

w(t)

Σ1

Σ2

x1

x2

◮ Feedback connection of
◮ an input-to-state convergent

system Σ1 and
◮ an input-to-state convergent

system Σ2

is input-to-state convergent under
additional small gain conditions
(Besselink, TAC2012)
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Σ1

Σ2

x1

x2
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Relation to Other Stability Notions

Early works:

◮ Global asymptotic stability of equilibria:
Krasovskii (Russia, 1950s), Markus, Yamabe (U.S.A., 1960),
Hartman (U.S.A., 1960,1962)

◮ Global asymptotic stability of time-varying (periodic) solutions:
Borg (Sweden, 1960), Yoshizawa (Japan, 1966,1975), Smith
(UK, 1986)
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Related Stability Notions

More recent works: Increase of interest since 1990-s (due to
applications to observer design, synchronization, output regulation,
tracking)

◮ Contraction:
◮ Lohmiller, Slotine (Automatica1998), Jouffroy, Slotine

(CDC2004), Zamani et. al. (TAC2011), Forni et. al.
(TAC2013), Russo et. al. (PloS Comput. Biol. 2010), Sontag
et. al., (CDC2014), ...

◮ Incremental stability:
◮ Angeli (2002,2009), Fromion et. al. (1999), Zamani et.al.

(TAC2011, SCL2013), Rüffer et. al. (SCL2013), Andrieu et. al.
(CDC2013), Chaillet et. al. (CDC2013), ...
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Convergence vs. Incremental Stability

Rüffer et. al. (CDC2012, SCL2013):

◮ Global Uniform Convergence 6⇒ Global Incremental Stability

◮ Global Uniform Convergence 6⇐ Global Incremental Stability

◮ Key differences:
◮ Incremental stability does not imply the boundedness of

solutions in forward time and the existence of a well-defined
bounded steady-state solution

◮ Convergence does not imply decay of the ‘distance’ between
any two solutions uniform in the initial distance

◮ On compact sets: Convergence ⇔ Incremental Stability

◮ Under additional conditions global uniform convergence implies
global incremental stability and vice versa
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Applications of convergence

◮ Steady-state analysis of nonlinear (control) systems using
frequency response functions for nonlinear systems

◮ Controller design for tracking control, disturbance rejection or
master-slave synchronisation

◮ Observer design

◮ Global output regulation

◮ Extremum seeking control for nonlinear systems with periodic
steady states

◮ Stable inversion problem

◮ Model reduction for nonlinear systems with stability
preservation and error bounds (BART)

◮ ...



25/52
Frequency Response Functions (FRFs)

◮ Linear Systems: ẋ = Ax +Bw(t) G (jω) = (jωI −A)−1B

State-space Model FRF

◮ FRF: a foundation for many powerful design and analysis tools
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◮ Linear Systems: ẋ = Ax +Bw(t) G (jω) = (jωI −A)−1B

State-space Model FRF

◮ FRF: a foundation for many powerful design and analysis tools

QUESTION: Can we extend linear FRF to nonlinear systems?
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Frequency Response Functions (FRFs)

◮ Linear Systems: ẋ = Ax +Bw(t) G (jω) = (jωI −A)−1B

State-space Model FRF

◮ FRF: a foundation for many powerful design and analysis tools

QUESTION: Can we extend linear FRF to nonlinear systems?

◮ Nonlinear systems: ẋ = F (x ,w(t)) no transfer functions!
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Frequency Response Functions (FRFs)

◮ Linear Systems:

Linear FRF G (jω) = (jωI − A)−1B characterizes all
steady-state responses to harmonic excitations

w(t) = a sinωt ⇒ x̄a,ω(t) =
[

ReG (jω) ImG (jω)
]

[

a sinωt

a cosωt

]

◮ Nonlinear systems: Possibly multiple steady-state solutions...

◮ Uniformly convergent systems: unique steady-state solution!

w(t + T ) ≡ w(t) ⇒ x̄w (t + T ) ≡ x̄w (t)
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Frequency Response Functions (FRFs)

◮ Problem: Given a uniformly convergent system (with bounded
inputs w(t))

ẋ = F (x ,w(t))

can we find a function characterizing steady-state solutions to
harmonic excitations?

◮ Answer: YES, but we need some additional assumptions...
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Uniformly Bounded Steady State (UBSS)

w(t)

)(tw

)(tx

)(tx

))(,( twxFx =

Disturbance Nonlinear Control System Converging response

◮ Definition: System has the Uniformly Bounded Steady-State if
∀ρ > 0,∃r > 0 such that if supt∈R ‖w(t)‖ ≤ ρ then
supt∈R ‖x̄w (t)‖ ≤ r

ρ
r

w( )t ( )twx

◮ Sufficient condition: Input-to-state stability or
Demidovich/Yakubovich conditions
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Frequency Response Functions (FRFs)

◮ Theorem:

There is unique continuous                   such that1    2(   ,   ,   )v  vωχ

(  ) (   ,   sin     ,   cos     )a
x t a at tω χ ω ω ω=

uniformly convergent  system + uniformly bounded steady-state

◮ Definition: Function χ(ω, v1, v2) is called the Frequency
Response Function of the convergent system

◮ For details see (Pavlov, van de Wouw, Nijmeijer, TAC 2007)

◮ For discrete-time systems see (Pavlov, van de Wouw, TAC
2012)
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FRFs: Example

◮ Consider the system:

ẋ1 = −x1 + x2

2 , Series connection of two

ẋ2 = −x2 + w uniformly convergent systems

◮ FRF can be calculated analytically:

x̄aω(t) =χ(ω, v1, v2) = χ(ω, a sinωt, a cosωt)

=

[

c1(ω)v
2
1
+ 2c2(ω)v1v2 + c3(ω)v

2
2

b1(ω)v1 + b2(ω)v2

]

with

b1(ω) =
1

1 + ω2
, b2(ω) =

−ω

1 + ω2
, c1(ω) =

2ω4 + 1

∆(ω)

c2(ω) =
ω3 − ω

∆(ω)
, c3(ω) =

2ω4 + 5ω2

∆(ω)
, ∆(ω) =

1 + 4ω2

(1 + ω2)2
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FRFs: Example

◮ Steady-state output response (y = h(x) = x1)

ȳaω(t) = h(χ(ω, v1, v2))

◮ Define the gain γ(a, ω) = 1

a

(

supv2
1+v2

2=a2 |h(χ(ω, v1, v2))|
)

Nonlinear Bode plot

γ
(1
, ω

)

Frequency [Hz]
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Determination of nonlinear FRFs

◮ Tools have been developed to determine/compute these
nonlinear FRFs for certain classes of systems, see
Heertjes et.al. CST2006, van de Wouw, Automatica2008, Doris, ASME JDSMC2008, Pavlov et.

al. CDC2007, CDC2008, Automatica2013

◮ Nonlinear FRFs have been exploited for the performance
analysis and performance-based control design for industrial
high-tech motion systems, such as wafer scanners, electron
microscopes, pick and place machines, etc., see
Heertjes et.al. CST2006, van de Wouw, Automatica2008, Pavlov et. al. Automatica2013,

Hunnekens et. al. Mechatronics2014, Hunnekens et. al., IEEECST2015

Wafer scanners
Pick-and-place

machines Electron  microscopes Printers, copiers
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Convergence/incremental stability as a tool

... incremental stability questions are often reformulated

as conventional stability questions for a suitable error

system, the zero solution of the error system translating

the convergence of two solutions to each other. This

ad-hoc remedy may be successful in specific situations but

it faces unpleasant obstacles that include both

methodological issues - such as the issue of transforming

a time-invariant problem into a time-variant one - and

fundamental issues - such as the issue of defining a

suitable error between trajectories.

Quote from Forni, F., Sepulchre, R. "Differential Lyapunov framework for contraction analysis" IEEE

Transactions on Automatic Control, 59(3), 614-628, 2013.
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Convergence-based observer design

◮ Plant + Observer:

+
_

Plant Observer ŷy

Observer with input y(t) is convergent

◮ Nonlinear system:

ẋ = f (x), measurement: y = h(x)

◮ Observer:
˙̂x = f (x̂) + l(y , ŷ ), ŷ = h(x̂)

◮ Observer goal: the observer states should converge to the real
plant state ⇒ x̂ − x → 0 as t → ∞

◮ Observer design: Choose l(y , ŷ ) such that
◮ Observer is a uniformly convergent system with input y(t)
◮ l(y , y) = 0
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Global Nonlinear Output Regulation

◮ Plant:

ẋ = f (x , u,w)

e = hr (x ,w), Regulated output

y = hm(x ,w), Measured output

◮ Exo-system: ẇ = s(w), w(0) ∈ W
Assumption: For any a > 0 there exists b > 0 such that

|w(0)| ≤ a ⇒ |w(t)| ≤ b for all t ∈ (−∞,∞)

◮ Controller:

ξ̇ = η(ξ, y)

u = θ(ξ, y)
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Global Nonlinear Output Regulation

Global Nonlinear Output Regulation Problem:

◮ (Very) loosely speaking: Find controller such that for all initial
conditions

1. e → 0 for t → ∞: Regulated output zeroing

2. Bounded solutions of the closed-loop system with a
well-defined globally asymptotically stable steady-state
solution
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Global Nonlinear Output Regulation

Solvability of the Global Nonlinear Output Regulation Problem:

◮ Controller solves the global nonlinear output regulation
problem

m (Pavlov et. al. Birkhäuser 2005)

1. Controller renders the closed-loop system globally uniformly
convergent with the UBSS property

2. There exist mappings π, σ satisfying the regulator equations:

∂π

∂w
s(w) = f (π(w), θ(σ(w), hm(π(w),w),w)

∂σ

∂w
s(w) = η(σ(w), hm(π(w),w))

0 = hr (π(w),w)
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Global Nonlinear Output Regulation

Solvability of the Global Nonlinear Output Regulation Problem:

◮ Controller solves the global nonlinear output regulation
problem

m (Pavlov et. al. Birkhäuser 2005)

◮ Interpretation of conditions 1./2.:

1. All solutions converge to a unique bounded steady-state
solution

2. There exists a feedforward generating a bounded steady-state
solution on which the regulated output is zero
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Global Nonlinear Output Regulation

Disturbance Rejection on Experimental Motion Platform (Pavlov
et. al. CST2007)
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Extremum-seeking Control

◮ Extremum seeking control is an adaptive, data-based
performance optimization strategy

◮ Most approaches are tailored to performance optimisation for
steady-state equilibria (Krstic, Wang, TAC2000, Tan et. al.
Automatica2006, ...)

◮ Problem: Extremum-seeking control for nonlinear systems
with periodic steady state response

◮ For application to the
performance optimization of
variable-gain controllers for the
control of motion stages in
wafer scanners, see Hunnekens
et. al. CDC2012, CST2015
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Extremum-seeking Control

Exo-system Cost
Function

Gradient
Estimator

Optimiser

Plant

+ x

Output Performance

Gradient
Estimate

Disturbance

Parameter

Refererence

a sin(ωt) 1

a
sin(ω(t − φ))

Assumptions:

◮ Exo-system: produces bounded periodic disturbances with
know period time

◮ Gradient Estimator + Optimiser with gain K : Standard

◮ Plant: Globally uniformly convergent

◮ Cost Function: E.g. based on Lp signal norm
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Extremum-seeking Control

Exo-system Cost
Function

Gradient
Estimator

Optimiser

Plant

+ x

Output Performance

Gradient
Estimate

Disturbance

Parameter

Refererence

a sin(ωt) 1

a
sin(ω(t − φ))

Result (van de Wouw et. al. CDC2012, Haring et. al. Automat-
ica2013, Hunnekens et. al., CST2015):

◮ Optimal performance can be approached arbitrarily closely
(for an arbitrarily large set of initial conditions) by tuning the
controller parameters a, ω and K/(a2ω) small enough
More precisely: Closed-loop system is Semi-globally Practically
Asymptotically Stable with parameters a, ω and K/(a2ω)
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Example

◮ Plant:

ẋ1 = x2

ẋ2 = −25x1 − b(θ)x2 + w1(t)

y = x1

b(θ) = 10 + 5(θ − 10)2

θ : Parameter

◮ Exosystem (Harmonic
Oscillator):

ẇ1 = 80w2

ẇ2 = −80w1

◮ Cost Function: L∞(yd (t))
with yd (t)(τ) = y(t + τ) for all τ ∈ [−td , 0]

⇒ Goal performance optimization: Maximize ‘amplitude’ of
the steady-state output solution
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Example

Error
gradient
estimate

Performance
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Conclusions

◮ Convergence is stability property on system level providing
(for an entire class of inputs)

◮ Well-defined bounded steady-state behavior
◮ Global uniform asymptotic stability of this steady-state

solution

◮ Powerful tool in many applications, such as performance
analysis, output regulation, model reduction, extremum
seeking, synchronization, etc.

◮ Engineering applications: Control of motion stages in wafer
scanners and electron microscopes, Control of optical storage
drives, Control of robots, Synchronisation of networks of
neurons, etc.
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Open Issues

◮ Convergence/Incremental stability of hybrid systems

◮ Convergence/Incremental stability of delay systems

◮ Further reduction conservatism of sufficient conditions
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