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Reaction networks

A reaction network is. ..

o A set of d distinct species X1, ..

e A set of K reactions Ry, .
and for each reaction we have

X4
.., Rx specifying how species interact with each other

o A stoichiometric vector ¢;, € Z¢ describing how reactions change the state value
o A propensity function A, € R describing the "strength" of the reaction

Ziirich
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A reaction network is. ..

o A set of d distinct species X1, ..., Xg

o Asetof K reactions Ry, ..., Rx specifying how species interact with each other
and for each reaction we have

o A stoichiometric vector ¢;, € Z¢ describing how reactions change the state value
o A propensity function A, € R describing the "strength" of the reaction

E‘ Example - SIR model

N
Ri : S+I —2 o1 X, = S
Ry 1 X5 R X2 = 1
Ry R %5 s Xs = R

Stoichiometries and propensities

Cl (_17 170)7 >\1($) B$1$2
¢ = (0,—-1,1), Aa(x) = a2
¢s = (1,0,-1), As(z) = azs
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A reaction network is. ..

o A set of d distinct species X1, ..., Xg

o Asetof K reactions Ry, ..., Rx specifying how species interact with each other
and for each reaction we have

o A stoichiometric vector ¢;, € Z¢ describing how reactions change the state value
o A propensity function A, € R describing the "strength" of the reaction

E‘ Deterministic networks
N o Large populations (concentrations are well-defined), e.g. as in chemistry
o Lots of analytical tools, e.g. reaction network theory, dynamical systems theory,
Lyapunov theory of stability, nonlinear control theory, etc.
Stochastic networks
o Low populations (concentrations are NOT well defined)
o Biological processes where key molecules are in low copy number (MRNA ~10
copies per cell)
o No well-established theory for biology, “analysis" often based on simulations. ..
o No well-established control theory
Corentin Briat
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State and dynamics

e The state X € Ng is vector of random variables representing molecules count
e The dynamics of the process is described by a jump Markov process (X (t))¢>0

Chemical Master Equation (Forward Kolmogorov equation)

Ziirich

K
pxg (xvt) = Z )\A:(I - Ck')pxo (33 - gkat) - Ak:(x)pxo (mvt)a T € Ng
k=1

where pg, (z,t) = P[X (t) = z| X (0) = zo], i.6. pzq(x,0) = Iz ().

Solving the CME

o Infinite countable number of linear time-invariant ODEs
o Exactly solvable only in very simple cases

e Some numerical schemes are available (FSP, QTT, etc) but limited by the curse of
dimensionality; if X € {0,...,z — 1}¢, then we have z¢ states
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Process (X (t) € Ny, d =1, K = 2)

Y 2 ny
e Birth reaction: ¢; =1and Ai(z) =k
e Death reaction: (o = —1 and Az (z) = v

Ziirich
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Process (X (t) € No, d=1, K =2)
t’y tzpy - tn’y
e Birth reaction: ¢; =1and Ai(z) =k

e Death reaction: (o = —1 and Az (z) = v

Two sample-paths with X(0) =0, k=3 andy =1

Ziirich

7 4 6 8 10 12 14 1 18
Time
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Birth-death process

Process (X (t) € No, d=1, K =2)

5 5 - ol
e Birth reaction: ¢; =1and Ai(z) =k
e Death reaction: (o = —1 and Az (z) = v

Solution of the CME for p(x,0) = do(x)

o plat) = T

Ziirich

e~ where o (t) :

k
T 7(1—6_7t),:v€N0
! v
t—oo ® k
o p(z,t) — e 7
!

Exponentially converges to a unique stationary Poisson distribution with parameter &
(true for any initial condition p(x, 0))
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Problems

Stability of stochastic reaction networks

o How to define stability?

Ziirich

e How to characterize global stability?

Control of stochastic reaction networks
o What control problems can we actually define?
e What controllers can we use?
e How to implement them?
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Ergodicity

Ergodicity

A given stochastic reaction network is ergodic if there is a probability distribution =
such that for all 2o € Ng, we have that p,, (z,t) — 7 as t — co.

Ziirich

9
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Ergodicity

A given stochastic reaction network is ergodic if there is a probability distribution =
such that for all 2o € Ng, we have that p,, (z,t) — 7 as t — co.

Theorem (Condition for ergodicity')
Assume that
(a) the state-space of the network is irreducible; and
(b) there exists a norm-like function V (x) such that the drift condition

Ziirich

K
Z Ni(@)[V(z+¢) = V(z)] < e — eV ()

=1

holds for some c1,co > 0 and for all z € N¢.

1 sSv P. Meyn and R. L. Tweedie. Stability of Markovian processes lll: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Prob. , 1993
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Ergodicity

A given stochastic reaction network is ergodic if there is a probability distribution =
such that for all 2o € Ng, we have that p,, (z,t) — 7 as t — co.

Theorem (Condition for ergodicity')
Assume that

(a) the state-space of the network is irreducible; and
(b) there exists a norm-like function V (x) such that the drift condition

Ziirich

K
Z i (:1‘)[\,,f(:1: +¢i) — ‘/’(;1:)] <c — CQV((E)

=1
holds for some c1,co > 0 and for all z € N¢.

Then, the stochastic reaction network is (exponentially) ergodic.

1 sSv P. Meyn and R. L. Tweedie. Stability of Markovian processes lll: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Prob. , 1993
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Unimolecular network (A\(x) affine)
0%){1, Xl—)w, )(1—))(27 X1 —— X1+ X2
Theorem (1)

Let us consider V (z) = (v,z), v € RL, and a given irreducible reaction network. The
drift condition is given by

Ziirich

(v, Az 4 b) < ¢1 — ca(v, z) for all z € Nd

where A is a Metzler matrix and b is a nonnegative vector obtained from the reactions.

1 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
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Ergodicity of unimolecular networks

Unimolecular network (A\(x) affine)

0%){1, Xl—)w, )(1—))(27 X1 —— X1+ X2

Theorem ()

Let us consider V (z) = (v,z), v € RL, and a given irreducible reaction network. The
drift condition is given by

Ziirich

(v, Az 4 b) < ¢1 — ca(v, z) for all z € Nd
where A is a Metzler matrix and b is a nonnegative vector obtained from the reactions.
Assume that A is nonsingular, then the following statements are equivalent:

(a) There exists v € R‘io such thatvT A < 0 (LP problem); i.e. A is Hurwitz stable.

(b) The Markov process is ergodic and all the moments are bounded and globally
converging

1 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
Corentin Briat Analysis and control of stochastic reaction networks 6/19
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Bimolecular network (A\(x) quadratic)
unimolecular reactions and X7 + X1 —— x, X3 + X2 —— X
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Bimolecular network (A\(z) quadratic)

unimolecular reactions and X7 + X1 —— x, X3 + X2 —— X

Theorem (1)

Let us consider V (z) = (v,z), v € RS, and a given irreducible reaction network. The
drift condition is given by

Ziirich

1
{ i } M (v) { 1 } + (v, Az +b) < ¢1 — e2(v, z) for all z € Ng

where A and b are related to unimolecular reactions and M (v) to bimolecular
reactions.

1 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
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Bimolecular network (A\(z) quadratic)

unimolecular reactions and X7 + X1 —— x, X3 + X2 —— X

Theorem (1)

Let us consider V (z) = (v,z), v € RS, and a given irreducible reaction network. The
drift condition is given by

Ziirich

1
{ 1 } M (v) { 1 } + (v, Az +b) < ¢1 — e2(v, z) for all z € Ng

where A and b are related to unimolecular reactions and M (v) to bimolecular
reactions. Assume further that

e A is nonsingular

o there exists av € N := {9 eR,: M(9) = 0} such that vT A < 0.

1 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
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Ergodicity of bimolecular networks
Bimolecular network (A\(x) quadratic)

unimolecular reactions and X7 + X1 —— X,

X1+ X2 — X
Theorem (1)

Let us consider V (z) = (v,z), v € RS, and a given irreducible reaction network. The
drift condition is given by

E

where A and b are related to unimolecular reactions and M (v) to bimolecular
reactions. Assume further that

Ziirich

1
} M (v) { i } + (v, Az +b) < ¢1 — e2(v, z) for all z € Ng

e A is nonsingular

o there exists av € N := {9 eR,: M(9) = 0} such that vT A < 0.

Then, the Markov process is ergodic, and all the moments are bounded and
converging.

1 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
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Analysis and control of stochastic reaction networks

719



Analysis of reaction networks
000080

Introduction
00000
\/
7N\
D-BSSE
N2 N pepartment of Bosystems

4 \\ ,’ ™ Science and Engineering

7N

In-vivo control
0000000000

Circadian clock'2 d =9, K

Conclusion
00000

=16

2000

1500 [\ \

1000|

Ziirich

Proteins population

500

0 %0 6
Time fhours]

1 s.J. M. G. Vilar, et al. Mechanisms of noise-resistance in genetic oscillator, Proc. Natl. Acad. Sci., 2002

2 gA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,

PLOS Computational Biology, 2014
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Theorem

For any values of the rate parameters, the circadian clock model is ergodic and has all
its moments bounded and converging.

1 sJ. M. G. Vilar, et al. Mechanisms of noise-resistance in genetic oscillator, Proc. Natl. Acad. Sci., 2002

2 sA. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,
PLOS Computational Biology, 2014
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e The ensemble averages (plain) converge to the their stationary values, which
coincide with the asymptotic time-averages (black dotted), i.e

tl;rgO]E[X(t)] = Z zm(z) = lim 7/ X(s)ds a.s. (1)

t—oo t
zeN‘Oi
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Open-loop reaction network

e d molecular species: X1,...,Xq4
e X is the actuated species: 0 ——— X3 ¢
o Measured/controlled species: Y = X,

Ziirich

1 sCA Briat, A. Gupta, and M. Khammash. A new motif for robust perfect adaptation in noisy biomolecular networks, accepted in Cell Systems, 2015
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Setup’

Open-loop reaction network

e d molecular species: X1,...,Xq4
e X is the actuated species: 0 ——— X3
o Measured/controlled species: Y = X,

Problem

Ziirich

Find a controller such that the closed-loop network is ergodic and such that we have

E[Y (t)] — p* as t — oo for some reference value p* as t — oo

1 §CA Briat, A. Gupta, and M. Khammash. A new motif for robust perfect adaptation in noisy biomolecular networks, accepted in Cell Systems, 2015
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Open-loop reaction network

e d molecular species: X1,...,Xq4
e X is the actuated species: 0 ——— X3 ¢
o Measured/controlled species: Y = X,

Problem

Find a controller such that the closed-loop network is ergodic and such that we have
E[Y (t)] — p* as t — oo for some reference value p* as t — oo

Ziirich

Antithetic integral controller
e Two species Z1 and Zs.

0z, 0-2Y% 2, Zi+2Z2—"—0, 027 x,.

reference measurement comparison actuation

where k,n, 0, u > 0 are control parameters.

1 sCA Briat, A. Gupta, and M. Khammash. A new motif for robust perfect adaptation in noisy biomolecular networks, accepted in Cell Systems, 2015
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The hidden integral action’

Moments equations

dez) =

Lelza() =

Ziirich

w—nE[Z1(t) Z2(t)]

OE[Y (8)] — nE[Z1(t) Z2(t)]-

1 sK. Qishi and E. Klavins. Biomolecular implementation of linear I/O systems, IET Systems Biology, 2010
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Moments equations

ez = w-EAOZ0)
$ LRz = ORI ()] - B (O Z0),
i3
N

Integral action
e We have that
S ®) = Z2()] = p— OE[Y ()],

so we have an integral action on the mean and we have that ©* = 11/6
o No need for solving moments equations — no moment closure :)

1 sK. Qishi and E. Klavins. Biomolecular implementation of linear I/O systems, IET Systems Biology, 2010
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Theorem
LetV(z) = (

v, x) withv € RSy and W (z) =

= (w,z) withw € R‘éo, w1, wp > 0.
Assume that

(a) the state-space of the open-loop reaction network is irreducible; and

s (b) there exist co > 0 and c3,cq > 0 such that
Z M@ V(@ + ) —Vi(e)] < —ce2V(z),
(2)
Z M@ Wz + ) —W(x)] =2 —e3—camy,

hold for all = € N¢ (together with some other dreadful conditions)

Then, the closed-loop network is ergodic and we have that E[Y (t)] — (/6 ast — oo

Corentin Briat
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Theorem
Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system
d
aIEE[X(t)] = AE[X()] + e1u(t) 3)
y(t) = el EX(1)]

Ziirich
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Unimolecular networks
Theorem

Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system

d

aE[X(t)] = AE[X ()] + e1u(t)
5 yt) = efEX()]
E is

©)

(a) asymptotically stable, i.e A Hurwitz stable (LP)
(o) output controllable, i.e. rank [ el'eq

el Aer ...efA% e | =1(LP)
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Theorem

Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system
d
—E[X(t
S EX ()]

y(t)

AE[X (1)) + exu(t)
TEIX (1)

Ziirich

(©)
is
(a) asymptotically stable, i.e A Hurwitz stable (LP)
(o) output controllable, i.e. rank [ efe; el Aes

cef A% le; | =1(LP)
Then, for all control parameters k,n > 0,

(a) the closed-loop reaction network (system + controller) is ergodic
(b) all the first and second order moments of the random variables X,

uniformly bounded and globally converging

..., Xg are
(c) E[Y(t)] — p/0 ast — oc.
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Properties

Closed-loop system

o Robust ergodicity, tracking and disturbance rejection

o Population control is achieved

Controller

Ziirich

o Decentralized: use only local information (single-cell control)

Additional remarks

o No moment closure problem

Implementable: small number of (elementary) reactions
o Low metabolic cost: the energy consumption is proportional to y, not n/0

e Innocuous: open-loop ergodic & output controllable = closed-loop ergodic

o Expected to work on a wide class of networks (even though the theory is not there

yet)

Corentin Briat
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5

K

mRNA

Ziirich

S = G ¢ (G &
71 -10 o0
- 0 0 1 -1

Corentin Briat

Ry : ©—""— mRNA (X1)

Ry : mRNA ¢

Rs : mMRNA —_, mRNA+protein (X1 + Xa2)
Ry : protein LN

M) = [ M=)
= [ k

A2 ()

YrZ1

Az ()

kpx1

As(z) )"

TpT2 ]T
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v .
& ’
protein &
" Ry : ©—""— mRNA (X1)
P
< Ry : mMRNA "¢
S Y .
:E mANA % % - *® Ry : mRNA 2, mRNA-+protein (X1 + X2)
‘ 2 R4 : protein LN
S G G (3 G Az) = [ M@ @ @) M@ 1"
1 -1 0 0
0 0 1 -1 = [ ke wm kpm w7

We want to control the average number of proteins by suitably acting on the
transcription rate k,
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Theorem
For any values of the system parameters ky,~y-,~p > 0 and the control parameters
u,0,k,n > 0, the closed-loop network is ergodic and we have that E[X2(t)] — 1/0 as

t — oo globally.
—E[X, (1)
/ —E[Xy(t)]
—E[Z,(1)]
f\ —E[Z,()]

B

@

Population [Molecules]

-

Population averages [Molecules|

A

||H 1l
0 20 30 40 60 7 10 20 30 40 50 60 70
Time ¢ Time
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Stochastic cell population

EX1] = KkE[Z1] - wE[X1] H
E[X2] = kpE[X1] — 1E[X2] =
E[Z1] = p—nE[Z1]E[Z] 7
. —nV(Z1, Z2) :
E[Z2] = 06E[X2] — nE[Z1]E[Z:] 2
—nV(Z1,22) &l

Corentin Briat Analysis and control of stochastic reaction networks 1719



Introduction Analysis of reaction networks In-vivo control Conclusion
00000 000000 00000000 0e 00000
\/
\,’\\, D-BSSE
Department of Biosystems .
2N /7 scence andEngincerng Robustness - Perfect adaptation
7N
. —EXi ()]
B —EX(0)] —E[Xy(t)]
Z —EX()] E[Z:(t)]
c E[Z (1) —El%0)
29 —E[Z(t)] J
\ S
< £ - ) / I
K] i T
= AW - S R R R R R ]
=~ Time Time
N

Corentin Briat

ER —E[X(1)]

<) —E[X,(t)]

= E[Zi(1)]

2 9 —E[Z:(t)]

R

14

5 4

g

E

=

5

i //“* """"""""" TN
% E

(c) Perturbation of the mRNA degradation rate
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(d) Perturbation of the protein degradation rate
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Concluding statements

Analysis - Still a lot of work

e Other types of Lyapunov functions

Ziirich
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o Optimization methods have to be developed routines
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Concluding statements

Analysis - Still a lot of work

e Other types of Lyapunov functions
o Optimization methods have to be developed routines

Ziirich

e Some other stuffs can be done for ergodicity analysis; i.e. non-Lyapunov methods

Control - Even more work...

o In-vivo (integral) control seems promising (closure problem does not exist)

o Extension to bimolecular networks, multiple inputs/outputs, different controllers —
biomolecular control theory - Cybergenetics

o |Implementation?
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Thank you for your attention

Ziirich
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Theorem
The following statements are equivalent:

(a) The matrix A is Hurwitz and the triplet (A, e1, el ) is output-controllable.

(b) There existv € RS, and w € RL, withw” er > 0, w”e, > 0, such that

Ziirich

vTA<0 and wTA+el =0
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Computational results

Theorem

The following statements are equivalent:

Ziirich

Comments

e Linear program

(a) The matrix A is Hurwitz and the triplet (A, e1, el ) is output-controllable.
(b) There existv € RS, and w € RL, withw” er > 0, w”e, > 0, such that

vTA<0 and wTA+el =0

e Can be robustified — if A € [A7, AT], thenvTAT < 0and wTA™ +¢f = 0.

e Can be made structural — A € {©,0, ®}¢*¢

Corentin Briat
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Bacterial DNA Plasmids
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Selectable
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Inserted Gene

Plasmid Map
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Antibiotic
Resistance
Gene

Origin of Replication
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