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Reaction networks

A reaction network is. . .
• A set of d distinct species X1, . . . ,Xd

• A set of K reactions R1, . . . , RK specifying how species interact with each other
and for each reaction we have
• A stoichiometric vector ζk ∈ Zd describing how reactions change the state value
• A propensity function λk ∈ R≥0 describing the "strength" of the reaction
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• A stoichiometric vector ζk ∈ Zd describing how reactions change the state value
• A propensity function λk ∈ R≥0 describing the "strength" of the reaction

Example - SIR model

R1 : S + I
β−−−→ 2I

R2 : I
γ−−−→ R

R3 : R
α−−−→ S

X1 ≡ S
X2 ≡ I
X3 ≡ R

Stoichiometries and propensities

ζ1 = (−1, 1, 0), λ1(x) = βx1x2
ζ2 = (0,−1, 1), λ2(x) = γx2
ζ3 = (1, 0,−1), λ3(x) = αx3
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Reaction networks

A reaction network is. . .
• A set of d distinct species X1, . . . ,Xd

• A set of K reactions R1, . . . , RK specifying how species interact with each other
and for each reaction we have
• A stoichiometric vector ζk ∈ Zd describing how reactions change the state value
• A propensity function λk ∈ R≥0 describing the "strength" of the reaction

Deterministic networks
• Large populations (concentrations are well-defined), e.g. as in chemistry
• Lots of analytical tools, e.g. reaction network theory, dynamical systems theory,

Lyapunov theory of stability, nonlinear control theory, etc.

Stochastic networks
• Low populations (concentrations are NOT well defined)
• Biological processes where key molecules are in low copy number (mRNA '10

copies per cell)
• No well-established theory for biology, “analysis" often based on simulations. . .
• No well-established control theory
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Chemical master equation

State and dynamics

• The state X ∈ Nd0 is vector of random variables representing molecules count
• The dynamics of the process is described by a jump Markov process (X(t))t≥0

Chemical Master Equation (Forward Kolmogorov equation)

ṗx0 (x, t) =
K∑
k=1

λk(x− ζk)px0 (x− ζk, t)− λk(x)px0 (x, t), x ∈ Nd0

where px0 (x, t) = P[X(t) = x|X(0) = x0], i.e. px0 (x, 0) = δx0 (x).

Solving the CME

• Infinite countable number of linear time-invariant ODEs
• Exactly solvable only in very simple cases
• Some numerical schemes are available (FSP, QTT, etc) but limited by the curse of

dimensionality; if X ∈ {0, . . . , x̄− 1}d, then we have x̄d states
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Birth-death process

Process (X(t) ∈ N0, d = 1, K = 2)

• Birth reaction: ζ1 = 1 and λ1(x) = k

• Death reaction: ζ2 = −1 and λ2(x) = γx
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Birth-death process

Process (X(t) ∈ N0, d = 1, K = 2)

• Birth reaction: ζ1 = 1 and λ1(x) = k

• Death reaction: ζ2 = −1 and λ2(x) = γx

Two sample-paths with X(0) = 0, k = 3 and γ = 1
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Birth-death process

Process (X(t) ∈ N0, d = 1, K = 2)

• Birth reaction: ζ1 = 1 and λ1(x) = k

• Death reaction: ζ2 = −1 and λ2(x) = γx

Solution of the CME for p(x, 0) = δ0(x)

• p(x, t) =
σ(t)x

x!
e−σ(t) where σ(t) :=

k

γ

(
1− e−γt

)
, x ∈ N0

• p(x, t) t→∞−−−→
kx

γxx!
e
− k
γ

Exponentially converges to a unique stationary Poisson distribution with parameter σ̄
(true for any initial condition p(x, 0))
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Problems

Stability of stochastic reaction networks

• How to define stability?
• How to characterize global stability?

Control of stochastic reaction networks
• What control problems can we actually define?
• What controllers can we use?
• How to implement them?
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Analysis of stochastic reaction networks
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Ergodicity

Ergodicity
A given stochastic reaction network is ergodic if there is a probability distribution π
such that for all x0 ∈ Nd0 , we have that px0 (x, t)→ π as t→∞.

Theorem (Condition for ergodicity1)
Assume that

(a) the state-space of the network is irreducible; and

(b) there exists a norm-like function V (x) such that the drift condition
K∑
i=1

λi(x)[V (x+ ζi)− V (x)] ≤ c1 − c2V (x)

holds for some c1, c2 > 0 and for all x ∈ Nd0 .

Then, the stochastic reaction network is (exponentially) ergodic.

1 S. P. Meyn and R. L. Tweedie. Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Adv. Appl. Prob. , 1993
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Ergodicity of unimolecular networks

Unimolecular network (λ(x) affine)

∅ −−−→X1, X1 −−−→ ∅, X1 −−−→X2, X1 −−−→X1 + X2

Theorem (1)
Let us consider V (x) = 〈v, x〉, v ∈ Rd>0 and a given irreducible reaction network. The
drift condition is given by

〈v,Ax+ b〉 ≤ c1 − c2〈v, x〉 for all x ∈ Nd0

where A is a Metzler matrix and b is a nonnegative vector obtained from the reactions.

Assume that A is nonsingular, then the following statements are equivalent:

(a) There exists v ∈ Rd>0 such that vTA < 0 (LP problem); i.e. A is Hurwitz stable.

(b) The Markov process is ergodic and all the moments are bounded and globally
converging

1 A. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,

PLOS Computational Biology, 2014
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Ergodicity of bimolecular networks

Bimolecular network (λ(x) quadratic)

unimolecular reactions and X1 + X1 −−−→ ×, X1 + X2 −−−→ ×

Theorem (1)
Let us consider V (x) = 〈v, x〉, v ∈ Rd>0 and a given irreducible reaction network. The
drift condition is given by[

1
x

]T
M(v)

[
1
x

]
+ 〈v,Ax+ b〉 ≤ c1 − c2〈v, x〉 for all x ∈ Nd0

where A and b are related to unimolecular reactions and M(v) to bimolecular
reactions. Assume further that

• A is nonsingular

• there exists a v ∈ Nq :=
{
θ ∈ Rd>0 : M(θ) = 0

}
such that vTA < 0.

Then, the Markov process is ergodic, and all the moments are bounded and
converging.

1 A. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,

PLOS Computational Biology, 2014
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Circadian clock1,2 d = 9, K = 16
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Theorem
For any values of the rate parameters, the circadian clock model is ergodic and has all
its moments bounded and converging.

1 J. M. G. Vilar, et al. Mechanisms of noise-resistance in genetic oscillator, Proc. Natl. Acad. Sci., 2002
2 A. Gupta, C. Briat, and M. Khammash. A scalable computational framework for establishing long-term behavior of stochastic reaction networks,

PLOS Computational Biology, 2014
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Circadian clock - Population and time averages
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• The ensemble averages (plain) converge to the their stationary values, which
coincide with the asymptotic time-averages (black dotted), i.e.

lim
t→∞

E[X(t)] =
∑
x∈Nd0

xπ(x) = lim
t→∞

1

t

∫ t

0
X(s)ds a.s. (1)
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In-vivo population control
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Setup1

Open-loop reaction network

• d molecular species: X1, . . . ,Xd

• X1 is the actuated species: ∅ u−−−→X1

• Measured/controlled species: Y = X`

Problem

Find a controller such that the closed-loop network is ergodic and such that we have
E[Y (t)]→ µ∗ as t→∞ for some reference value µ∗ as t→∞

Antithetic integral controller

• Two species Z1 and Z2.

∅ µ−−−→ Z1︸ ︷︷ ︸
reference

, ∅ θY−−−→ Z2︸ ︷︷ ︸
measurement

, Z1 + Z2
η−−−→ ∅︸ ︷︷ ︸

comparison

, ∅ kZ1−−−→X1︸ ︷︷ ︸
actuation

.

where k, η, θ, µ > 0 are control parameters.

1 C. Briat, A. Gupta, and M. Khammash. A new motif for robust perfect adaptation in noisy biomolecular networks, accepted in Cell Systems, 2015
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The hidden integral action1

Moments equations

d

dt
E[Z1(t)] = µ− ηE[Z1(t)Z2(t)]

d

dt
E[Z2(t)] = θE[Y (t)]− ηE[Z1(t)Z2(t)].

Integral action

• We have that
d

dt
E[Z1(t)− Z2(t)] = µ− θE[Y (t)],

so we have an integral action on the mean and we have that µ∗ = µ/θ

• No need for solving moments equations→ no moment closure :)

1 K. Oishi and E. Klavins. Biomolecular implementation of linear I/O systems, IET Systems Biology, 2010
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General stabilization result

Theorem
Let V (x) = 〈v, x〉 with v ∈ Rd>0 and W (x) = 〈w, x〉 with w ∈ Rd≥0, w1, w` > 0.
Assume that

(a) the state-space of the open-loop reaction network is irreducible; and

(b) there exist c2 > 0 and c3, c4 ≥ 0 such that

K∑
k=1

λk(x)[V (x+ ζk)− V (x)] ≤ −c2V (x),

K∑
k=1

λk(x)[W (x+ ζk)−W (x)] ≥ −c3 − c4x`,
(2)

hold for all x ∈ Nd0 (together with some other dreadful conditions).

Then, the closed-loop network is ergodic and we have that E[Y (t)]→ µ/θ as t→∞.
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Unimolecular networks

Theorem
Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system

d

dt
E[X(t)] = AE[X(t)] + e1u(t)

y(t) = eT` E[X(t)]
(3)

is

(a) asymptotically stable, i.e A Hurwitz stable (LP)

(b) output controllable, i.e. rank
[
eT` e1 eT` Ae1 . . . eT` A

d−1e1
]

= 1 (LP)

Then, for all control parameters k, η > 0,

(a) the closed-loop reaction network (system + controller) is ergodic

(b) all the first and second order moments of the random variables X1, . . . , Xd are
uniformly bounded and globally converging

(c) E[Y (t)]→ µ/θ as t→∞.

Corentin Briat Analysis and control of stochastic reaction networks 13/19



Introduction Analysis of reaction networks In-vivo control Conclusion

Unimolecular networks

Theorem
Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system

d

dt
E[X(t)] = AE[X(t)] + e1u(t)

y(t) = eT` E[X(t)]
(3)

is

(a) asymptotically stable, i.e A Hurwitz stable (LP)

(b) output controllable, i.e. rank
[
eT` e1 eT` Ae1 . . . eT` A

d−1e1
]

= 1 (LP)

Then, for all control parameters k, η > 0,

(a) the closed-loop reaction network (system + controller) is ergodic

(b) all the first and second order moments of the random variables X1, . . . , Xd are
uniformly bounded and globally converging

(c) E[Y (t)]→ µ/θ as t→∞.

Corentin Briat Analysis and control of stochastic reaction networks 13/19



Introduction Analysis of reaction networks In-vivo control Conclusion

Unimolecular networks

Theorem
Let us consider a unimolecular reaction network with irreducible state-space. Assume
that its first-order moment system

d

dt
E[X(t)] = AE[X(t)] + e1u(t)

y(t) = eT` E[X(t)]
(3)

is

(a) asymptotically stable, i.e A Hurwitz stable (LP)

(b) output controllable, i.e. rank
[
eT` e1 eT` Ae1 . . . eT` A

d−1e1
]

= 1 (LP)

Then, for all control parameters k, η > 0,

(a) the closed-loop reaction network (system + controller) is ergodic

(b) all the first and second order moments of the random variables X1, . . . , Xd are
uniformly bounded and globally converging

(c) E[Y (t)]→ µ/θ as t→∞.
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Properties

Closed-loop system

• Robust ergodicity, tracking and disturbance rejection
• Population control is achieved

Controller
• Innocuous: open-loop ergodic & output controllable⇒ closed-loop ergodic
• Decentralized: use only local information (single-cell control)
• Implementable: small number of (elementary) reactions
• Low metabolic cost: the energy consumption is proportional to µ, not µ/θ

Additional remarks
• No moment closure problem
• Expected to work on a wide class of networks (even though the theory is not there

yet)
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Gene expression network d = 2, K = 4

R1 : ∅ kr−−−→ mRNA (X1)

R2 : mRNA
γr−−−→ ∅

R3 : mRNA
kp−−−→ mRNA+protein (X1 + X2)

R4 : protein
γp−−−→ ∅

S =
[
ζ1 ζ2 ζ3 ζ4

]
λ(x) = [ λ1(x) λ2(x) λ3(x) λ4(x) ]T

=

[
1 −1 0 0
0 0 1 −1

]
= [ kr γrx1 kpx1 γpx2 ]T

We want to control the average number of proteins by suitably acting on the
transcription rate kr
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Gene expression control

Theorem
For any values of the system parameters kp, γr, γp > 0 and the control parameters
µ, θ, k, η > 0, the closed-loop network is ergodic and we have that E[X2(t)]→ µ/θ as
t→∞ globally.
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Deterministic vs. stochastic populations

Deterministic cell population

ẋ1 = kz1 − γrx1
ẋ2 = kpx1 − γpx2
ż1 = µ− ηz1z2
ż2 = θx2 − ηz1z2
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Stochastic cell population

Ė[X1] = kE[Z1]− γrE[X1]

Ė[X2] = kpE[X1]− γpE[X2]

Ė[Z1] = µ− ηE[Z1]E[Z2]
−ηV (Z1, Z2)

Ė[Z2] = θE[X2]− ηE[Z1]E[Z2]
−ηV (Z1, Z2)
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Robustness - Perfect adaptation
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(a) Perturbation of the controller gain k
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(b) Perturbation of the translation rate kp
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(c) Perturbation of the mRNA degradation rate
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(d) Perturbation of the protein degradation rate
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Concluding statements
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Concluding statements

Analysis - Still a lot of work

• Other types of Lyapunov functions
• Optimization methods have to be developed routines
• Some other stuffs can be done for ergodicity analysis; i.e. non-Lyapunov methods

Control - Even more work...
• In-vivo (integral) control seems promising (closure problem does not exist)
• Extension to bimolecular networks, multiple inputs/outputs, different controllers→

biomolecular control theory - Cybergenetics
• Implementation?
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Thank you for your attention
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Computational results

Theorem
The following statements are equivalent:

(a) The matrix A is Hurwitz and the triplet (A, e1, e
T
` ) is output-controllable.

(b) There exist v ∈ Rd>0 and w ∈ Rd≥0 with wT e1 > 0, wT e` > 0, such that

vTA < 0 and wTA+ eT` = 0.

Comments
• Linear program
• Can be robustified→ if A ∈ [A−, A+], then vT+A

+ < 0 and wT−A
− + eT` = 0.

• Can be made structural→ A ∈ {	, 0,⊕}d×d
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Implementation

Bacterial DNA Plasmids

Corentin Briat Analysis and control of stochastic reaction networks 19/19


	Introduction
	Analysis of reaction networks
	In-vivo control
	Conclusion



