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SECTION 1: Switched systems framework

▶ Given locally Lipschitz subsystems f1, f2, . . . fM : Rn → Rn we consider

ẋ(t) = fσ(t)(x(t)), SwSys

where σ : [0,+∞) → ⟨M⟩ := {1, . . . ,M} is a switching signal.

▶ The switching signal �selects� which subsystems the solutions will follow. Example:

τ tσ
1

tσ
2

tσ
3

tσ
4

tσ
5

1

2

3 σ(t)

1 1 1 2 2 2 2 1 2 2 3 3 3 2

t

⟨M⟩

▶ We study uniform global asymptotic stability (UGAS) of (SwSys) with respect to
classes of switching signals.
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ẋ(t) = fσ(t)(x(t)), SwSys

where σ : [0,+∞) → ⟨M⟩ := {1, . . . ,M} is a switching signal.

▶ The switching signal �selects� which subsystems the solutions will follow. Example:

τ tσ
1

tσ
2

tσ
3

tσ
4

tσ
5

1

2

3 σ(t)

1 1 1 2 2 2 2 1 2 2 3 3 3 2

t

⟨M⟩

▶ We study uniform global asymptotic stability (UGAS) of (SwSys) with respect to
classes of switching signals.

Matteo Della Rossa 09.06.22 4 / 36



SECTION 1: Switched systems framework

▶ Given locally Lipschitz subsystems f1, f2, . . . fM : Rn → Rn we consider
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Remarkable classes of signals

▶ Class of arbitrary switching signals:

S := {σ : [0,+∞) → ⟨M⟩ | σ piecewise constant}

▶ Notation: Given σ ∈ S, with {tσk} we denote the set of time instants at which σ
is discontinuous, a.k.a. the switching times.

▶ Class of dwell time switching signals: Given a threshold τ > 0, the (so-called)
dwell-time, consider

Sdw(τ) :=
{
σ ∈ S | tσk − tσk−1 ≥ τ , ∀ tσk > 0

}
.

▶ Many other possible classes (periodic, average dwell times, persistence of switching
conditions, etc )
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The Linear Case

Consider A = {A1, . . . ,AM} ⊂ Rn×n, we consider the linear switched system

ẋ(t) = Aσ(t)x(t). SwLIN

Example ([Liberzon '03, pag. 19]).
Properties/Empirical observation:

▶ A1,A2 ∈ R2×2,

▶ A1,A2 are Hurwitz stable, thus the 2
linear subsystems are exponentially
stable,

▶ There exists a �destabilizing�
σ : R≥0 → ⟨M⟩,

▶ If we �wait enough�, we can ensure
stability.

x1

x2
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Stability Analysis: Basic Result:

Generalizing/formalizing these intuitions, we have that:

▶ The fact that A1, . . . ,AM are all Hurwitz stable is a necessary but not su�cient
condition for stability of (SwLIN) on S (arbitrary switching).

Proposition [Morse, '96]

Given A = {A1, . . . ,AM} ⊂ Rn×n a �nite set of Hurwitz stable matrices, there exists a
(large enough) τA > 0 such that (SwLIN) is UGAS (with respect to the origin) on
Sdw(τA).

Remark: Lyapunov-based proof, generalizable to exponentially stable subsystems (not
necessarily linear).
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...and what about the Nonlinear Case?

Consider again the system
ẋ(t) = fσ(t)(x(t)).

where f1, . . . , fM : Rn → Rn are nonlinear maps.

Question(s):

(a) What if the subsystems are exponentially stable with respect to di�erent equilibria?

(b) Suppose that 0 is GAS for ẋ = fi(x), for all i ∈ {1, . . . ,M}. Does it exist a (large
enough) dwell time τ > 0 s.t. (SwSys) is UGAS over Sdw(τ)?

For analyzing (a) we will need some new and more tailored concept of �stability� while
the answer to (b) is NO, in general, but we can anyhow say something.

�Easy� Non-linearities: For (a) we focus on a�ne subsystems, while for (b) we
consider homogeneous subsystems.
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Spoiler: Motivations/Important Features

Section 2: A�ne

▶ Defn: fi(x) := Aix+ bi

▶ First example of subsystems not
sharing the same equilibrium;

▶ �Almost linear� when far from the
origin;

▶ Characterize or approximate complex
non-linear behaviors (via local Taylor
approximation);

▶ A�ne subsystems as model for power
converters.

Section 3: Homogeneous

▶ Defn: fi(λx) = λkfi(x), k ∈ N,
λ ≥ 0.

▶ The convergence is not-exponential
(can be �slower/faster�);

▶ Positive scaling of trajectory is again a
trajectory;

▶ Homogeneous systems provide a
natural framework for the problem of
�nite-time (or practical) stabilization.
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SECTION 2: Switched A�ne Systems

Consider A = {A1, . . . ,AM} ⊂ Rn×n, and B = {b1, . . . , bM} ⊂ Rn

▶ We consider systems
ẋ(t) = Aσ(t)x(t) + bσ(t). SwAFF

▶ xei = −A−1
i bi is the equilibrium of the i-th subsystem;

▶ The asymptotic behavior of (SwAFF) is related with the one of

ẋ(t) = Aσ(t)x(t), SwLIN

called the linearization of system (SwAFF).
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Arbitrary Switching Stability

Main Idea: Under the assumption that (SwLIN) is UGAS, we show that (SwAFF) has
an exponentially stable compact set.

▶ Notation: Ψσ(t,x) ( Ψ
lin
σ (t,x)) is the sol. of (SwAFF) (resp. (SwLIN)).

▶ A compact set C is uniformly exponentially stable for (SwAFF) on S̃ if there exists
a M > 0 and κ > 0, for all x ∈ Rn, all σ ∈ S̃ and all t ∈ R≥0, it holds that

|Ψσ(t,x)|C ≤ M |x|C e−κt.

Technical Lyapunov result for Linear Sw. Sys., [Mol. and Pya., '89]

(SwLIN) is UGAS on S if and only if there exists a norm v : Rn → R≥0 and a scalar
κ > 0 such that

v(Ψlin
σ (t,x)) ≤ e−κtv(x), ∀x ∈ Rn, ∀t ∈ R≥0, ∀σ ∈ S.
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Existence Result

The proof basically follows the idea of the discrete time case.

First Lemma->a �safety� outer bound

Suppose that linearized system (SwLIN) is UGAS on S. Take v : Rn → R≥0 and κ > 0
as in the Converse Lyapunov Lemma. Then there exists R > 0 such that
Kv,R := {x ∈ Rn | v(x) ≤ R}, is forward invariant for (SwAFF) on S.

With this security region, we are able to provide the existence result.

Theorem: Existence of exponentially stable set under arbitrary switching

Consider the set K(t) = {Ψσ(t, 0) | σ ∈ S}. (reachable set from 0 at time t). Then

K∞ = lim
t→∞

K(t)

is well-de�ned, and it is uniformly exponentially stable.

Matteo Della Rossa 09.06.22 12 / 36



Existence Result

The proof basically follows the idea of the discrete time case.

First Lemma->a �safety� outer bound

Suppose that linearized system (SwLIN) is UGAS on S. Take v : Rn → R≥0 and κ > 0
as in the Converse Lyapunov Lemma. Then there exists R > 0 such that
Kv,R := {x ∈ Rn | v(x) ≤ R}, is forward invariant for (SwAFF) on S.

With this security region, we are able to provide the existence result.

Theorem: Existence of exponentially stable set under arbitrary switching

Consider the set K(t) = {Ψσ(t, 0) | σ ∈ S}. (reachable set from 0 at time t). Then

K∞ = lim
t→∞

K(t)

is well-de�ned, and it is uniformly exponentially stable.

Matteo Della Rossa 09.06.22 12 / 36



Some properties of K∞ and example

▶ Stability of (SwLIN) is also necessary: if not, K∞ not well-de�ned.

▶ K∞ contains all the equilibria of all the convex combinations of subsystems (a.k.a.
the Filippov equilibria) (as expected.)

▶ K∞ is compact, (path-)connected, but in general not convex!

▶ Our proof (based on a set-limit) is not �numerically constructive�. We propose two
di�erent methods, providing (possibly non-convex) outer approximations.
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Two methods for over-approximating K∞

LMI-based

Proposition 1

If there exists a symmetric matrix
S ∈ Rn×n a vector c ∈ Rn and a scalar
κ > 0 satisfying

SA⊤
i +AiS ≺ −2κS, ∀i ∈ ⟨M⟩[
κ2 (Aic+ bi)

⊤

Aic+ bi S

]
≻ 0, ∀i ∈ ⟨M⟩

then
KQ := {x ∈ Rn : (x− c)⊤S−1(x− c) ≤
1} ⊇ K∞ is forward invariant.

SOS-based

Proposition 2

If there exist a polynomial V (x) ∈ R[x] of
degree d and r > 0, β ≥ 0, ε > 0 satisfying

V (x)− ϵ∥x∥dd is SOS

−∇V ⊤(x)(Aix+ bi)− β(V (x)− r) is SOS

∀i ∈ ⟨M⟩ then

KSOS := {x ∈ Rn : V (x) ≤ r} ⊇ K∞

is forward invariant.
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Example, Outer Estimation of K∞

We studied the planar 2-modes example given by A1 =

[
−1 −1
0 −1

]
, A2 =

[
−1 0
−1 −1

]
,

b1 = b2 = [−1,−1]⊤. The two equilibria are xe1 = [0,−1]⊤ and xe2 = [−1, 0]⊤.
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Figure: On the left, a representation of state space with the forward invariant sets KQ and
KSOS. On the right, the evaluation of polynomial V (x) associated to KSOS along trajectories.
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DWELL-TIME: Preliminaries

Recall: Given a time threshold τ > 0, a so-called dwell-time, consider

Sdw(τ) :=
{
σ ∈ S | tσk − tσk−1 ≥ τ , ∀ tσk > 0

}
,

where {tσk} denotes the set of time instants at which σ is discontinuous.

Technical Lyapunov result for Linear Sw. Sys. [Wirth, 2005 ]

Given τ > 0, (SwLIN) is UGAS on Sdw(τ) if and only if there exist κ > 0 and norms
v1 . . . vM : Rn → R≥0 such that

vi(e
Aitx) ≤ e−κtvi(x), ∀x ∈ Rn, ∀ t ∈ R≥0, ∀i ∈ ⟨M⟩.

vi(e
Aiτx) ≤ e−κτvj(x), ∀x ∈ Rn, ∀(i, j) ∈ ⟨M⟩2.
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Stability/Asymptotic Analysis

▶ Unfortunately, if the linear part is only dwell-time stable (and not on the whole S),
�classical� forward invariant sets/attractors do not even exist.

(Weaker) Stability/ Boundedness Notion

Given a class Sdw(τ), (SwAFF) is uniformly globally ultimately bounded (UGUB) on
Sdw(τ) if there exists a compact set V ⊂ Rn such that

∀x ∈ Rn, ∀σ ∈ Sdw(τ), ∃T (σ,x) ≥ 0 such that ∀t ≥ T (σ,x), Ψσ(t,x) ∈ V.

In this case the compact set V ⊂ Rn is said to be a uniform bounding region.

▶ V is not necessary forward invariant (and in our case it is not, in general), but all
solutions, at a certain instant (depending on the particular solution), enter and
stay inside it.
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Existence of Bounding Regions

Existence Theorem

For any given τ ∈ R≥0, suppose that the linearized system (SwLIN) is UGAS on
Sdw(τ). Then (SwAFF) is uniformly globally ultimately bounded (UGUB) on Sdw(τ).

The proof is skipped, it uses of the previous Lyapunov conv. result and the Lemma:

Technical Lemma

For τ > 0, suppose that (SwLIN) is UGAS on Sdw(τ). Then, there exist translated
normsa ṽi : Rn → R, a κ̃ > 0 and compact sets Xi ⊂ Rn, i ∈ ⟨M⟩, such that

xei ∈ Int(Xi), ∀ i ∈ ⟨M⟩,
ṽi
(
Ψi(t,x)

)
≤ ṽi(x), ∀x ∈ Rn \ Int(Xi), ∀t ∈ R≥0,∀i ∈ ⟨M⟩,

ṽi
(
Ψi(τ ,x)

)
≤ e−κ̃τ ṽj(x), ∀x ∈ Rn \ Int(Xj), ∀(i, j) ∈ ⟨M⟩2.

aA function w : Rn → R is said to be a translated norm if there exist a norm v : Rn → R and a
vector c ∈ Rn (called the center of w) such that w(x) = v(x− c), for all x ∈ Rn.
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Graphical Representation

V1

X1 X2

V2

xe1 xe2

Figure: For two subsystems {1, 2}, representation of the sets X = X1 ∪ X2 (solid lines), level
subsets of the translated norms. The bounding region is de�ned as the union V = ∪i∈⟨M⟩Vi
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Forward Invariance with respect to the switching instants

We can also show that the region X := ∪i∈⟨M⟩Xi has the following property:

A �weaker� forward invariance property

A compact set C ⊂ Rn is forward invariant for (SwAFF) on Sdw(τ) with respect to the
switching points if, for all x ∈ C, all σ ∈ Sdw(τ), we have that

Ψσ(t
σ
k ,x) ∈ C, ∀x ∈ C, ∀σ ∈ Sdw(τ), ∀tσk ≥ 0,

where, we recall, {tσk} denotes the (�nite or countable) set of discontinuities of the
signal σ ∈ Sdw(τ).
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Estimation of bounding regions via LMIs.

Inspired by LMI su�cent (but unfortunately, not necessary, conditions) proposed in
[Geromel & Colaneri '06'], we restrict the search on quadratic (translated) norms.

LMIs conditions

Look for positive de�nite matrices Pi,Wij ∈ Rn×n and vectors ci, dij ∈ Rn satisfying
the inequalities

A′
iPi + PiAi ≺ −Eii ∀i ∈ ⟨M⟩

eA
′
iτPie

Aiτ − Pj ≺ −Eij ∀(i, j) ∈ ⟨M⟩2, i ̸= j

with

Pi =

[
Pi −Pici

−c⊤i Pi c⊤i Pici

]
, Ai =

[
Ai bi
0 0

]
, Eij =

[
Wij −Wijdij

−d⊤ijWij d⊤ijWijdij − 1

]
.
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Examples and Discussion

We consider a switched a�ne system (SwAFF) de�ned by

A1 =

[
0 1

−10 −1

]
, A2 =

[
0 1

−0.1 −0.5

]
, b1 =

[
−1
−1

]
, b2 =

[
1
0

]
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Figure 4: For three different values of dwell-time τ , the regions X1 (red line), X2 (blue line), V1 (red area)
and V2 (blue area) are represented. The bounding region V = V1∪V2 is to where all solutions converge under
any dwell-time switching signal σ ∈ Sdw(τ). The gray points represent the equilibria of each subsystem and
the dotted regions represent Φ2(τ,X1) and Φ1(τ,X2) keeping the same color pattern.

Algorithm 1: Path-following method for optimizing the centers ci, i ∈ 〈M〉
Data: System matrices (Ai, bi), i ∈ 〈M〉, a dwell-time τ , a precision ε > 0 and a step-bound δ > 0

1 ci ← xei, ∀i ∈ 〈M〉;
2 (Pi,Mij , dij)← arg minPi,Mij ,dij f(Mij) s.t. (40b);
3 do

4 (P̂i, ĉi, M̂ij , d̂ij)← arg minP̂i,ĉi,M̂ij ,d̂ij
f(M̂ij) s.t.

hij(Pi, Pj , ci, cj ,Mij , dij)+
∑

X∈{Pi,Pj ,ci,cj ,Mij ,dij}

∂hij(Pi, Pj , ci, cj ,Mij , dij)

∂X
(X̂−X) > 0, (i, j) ∈ 〈M〉2

−δ < X̂ −X < δ, X ∈ (Pi, ci);

5 ci ← ci − ĉi;
6 (Pi,Mij , dij)← arg minPi,Mij ,dij f(Mij) s.t. (40b);

while |f(Mij)− f(M̂ij)| > εf(Mij);
7 return (Pi, ci,Mij , dij);

not interfere in the feasibility of the optimization problem in (40a)-(40b). Also, though this method only
guarantees convergence to local optima, the fact that suitable points ci ∈ Rn, i ∈ 〈M〉, should lie close
to xei (tending to it when τ → ∞) allows us to efficiently warm-start this method. As described in [39],
the idea behind the path-following algorithm is to linearize the non-linear contraints using a first-order
approximation around a given feasible solution and iteratively compute a direction in the decision space
that slightly improves the objective function. Before presenting the algorithm adapted to our context, let us
use (40a) and (40b) to define the following objective function

f(Mij) =
∑

(i,j)∈〈M〉2
Tr Mij (46)

and the matrix-valued function

hij(Pi, Pj , ci, cj ,Mij , dij) =

[
−Qij(Pi, Pj) +D T (dij)

T (dij)
> Mij

]
(47)

where the dependence on ci and cj happens through the the matrices Pi and Pj in the definition of Qij .
Algorithm 1 performs the optimization with respect to the centers ci, i ∈ 〈M〉. With some abuse of
notation, we refer to the solution tuple (Pi, ci,Mij , dij)(i,j)∈〈M〉2 simply as (Pi, ci,Mij , dij). In Lines 1 and 2
the algorithm initializes each ci with the associated equilibrium xei and the variables Pi,Mij , dij with the

21

For three di�erent values of τ , the regions X1 (red line), X2 (blue line), V1 (red area)
and V2 (blue area) are represented. The bounding region V = V1 ∪ V2 is the UGUB set.
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3-Mode example: Optimizing centers of translated norms.

A1 =

[
−5 1
−1 −4

]
, A2 =

[
−5 −1
1 −4

]
, A3 =

[
−2 8
−5 −5

]
, b1 =

[
−50
−10

]
, b2 =

[
−10
−40

]
, b3 = 0.

▶ Regions X1, X2 and X3

and regions V1, V2 and V3

for τ = 0.1 (top) and
τ = 0.5 (bottom).

▶ On the left ci = xei for all
i ∈ ⟨M⟩, on the right ci
�optimized�.
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Figure 6: Regions X1, X2 and X3 (red, blue and green lines, resp.) and regions V1, V2 and V3 (red, blue
and green areas, resp.) for τ = 0.1 (top) and τ = 0.5 (bottom). The figures on the left take ci = xei for all
i ∈ 〈M〉 whereas the ones on the right have ci obtained from Algorithm 1.

sets. On the other hand, when dwell-time switching is considered, forward invariant sets need not exist and
bounding regions are considered. Theoretical results ensuring the existence and non-existence of such sets
are given and numerical methods based on convex optimzation were devised to outer approximate them.
These results are illustrated by examples for each case.

Future work directions are the stability study of switched affine systems under other classes of switching
signals such as periodic, path-constrained, and markov-jump switching. Also, these results may be extended
to cope with more general switched non-linear systems, as affine dynamics can represent a local first-order
approximation of general smooth vector-fields.
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Summary of Section 2

▶ Stability of continuous-time switched a�ne systems under arbitrary and dwell-time
switching rules.

▶ Proof Technique: Use the strong properties of linear switching systems to say
something about a�ne ones.

▶ Semide�nite optimization approaches to provide �safe� outer approximations.
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SECTION 3: Homogeneous Case

We study the switched system

ẋ(t) = fσ(t)(x(t)), SwHom

k-Homogeneity Assumption

Given k ∈ R, fi : Rn → Rn, is homogeneous of degree k (and we write fi ∈ Hk
n), i.e.

fi(λx) = λkfi(x), ∀x ∈ Rn, ∀λ > 0.

▶ k = 1 corresponds to the �linear grown� case. Earlier results (Morse '96) apply.

▶ k > 1 corresponds to superlinear case. Slow decay near the origin.

▶ k < 1 corresponds to sublinear case. Slow decay far from the origin.

QUESTION: Suppose that ẋ = fi(x) is GAS, for all i ∈ ⟨M⟩. Does it exist a (large
enough) dwell time τ > 0 s.t. (SwHom) is UGAS over Sdw(τ)?
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Motivating/Illustrating Example

For i ∈ {1, 2}, consider
fk
i (x) := |Aix|k−1Aix

where A1,A2 ∈ R2×2 are Hurwitz matrices, chosen as in [Liberzon '03, pag. 19].

Properties:

▶ k = 1 corresponds to the example already
presented!;

▶ It is NOT arbitrary stable; (UGAS on S);
▶ There exists a (large enough) dwell-time τ > 0

such that it is UGAS on Sdw(τ)

x1
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k > 1: Instability but Ultimate Boundedness

For i ∈ {1, 2}, consider
fi(x) := |Aix|Aix, (homogeneous of degree 2).

Key Observation: Same trajectories, but �fast� far from the origin, �slow� close to it.

Idea:

▶ There exists a periodic non-converging
solution, corresponding to a periodic
(and, in particular, dwell-time) signal;

▶ By scaling the initial condition, the
period/dwell-time can be increased
arbitrarily.

▶ This time-scaling does not occur in
linear vector �elds.
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k < 1: Unboundedness but Local Stability

For i ∈ {1, 2}, consider

fi(x) := |Aix|−
1
2Aix, (homogeneous of degree

1

2
).

Key Observation: Same trajectories, but �slow� far from the origin, �fast� close to it.

Idea:

▶ We can build, as in the linear case, a
destabilizing signal.

▶ By scaling, the period/dwell-time can be
increased arbitrarily.

▶ Formally: For any τ > 0, there exist
x0 ∈ Rn and σ ∈ Sdw(τ) such that the
corresponding solution diverges.
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Main Theorem, �Bad� behavior for any dwell-time

Qualitative Behavior, SuperLinear case

Given F = {fi}i∈⟨M⟩ ⊂ Hk
n, with k > 1, and suppose that ẋ = fi(x) is GAS, for each

i ∈ ⟨M⟩. Then, the following hold:

▶ (Ultimate boundedness) For every τ > 0 there exists an R(τ) > 0 such that, for
each x0 ∈ Rn and σ ∈ Sdw(τ)

lim sup
t→+∞

|ϕF (t,x0,σ)| ≤ R(τ).

▶ (Non-Stability) Generally, for every τ > 0, there exists a ball B(0,R(τ)), a
sequence (x0ℓ)ℓ∈N, x0ℓ → 0, σℓ ∈ Sdw(τ) and tℓ > 0 such that
ϕF (tℓ,x0ℓ,σℓ) /∈ B(0,R(τ)) (i.e. 0 is not Lyapunov stable).

These (�good/bad�) qualitative properties hold for any dwell-time. Of course, the
�safety� and �instability� radii R(τ), R(τ) depend on the chosen dwell time.
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�Dual� Result, the Sub-Linear Case

Sub-Linear Case

Consider F = {fi}i∈⟨M⟩ ⊂ Hk
n, with k < 1, k ̸= 0 and suppose that the subsystem

ẋ = fi(x) is GAS, for each i ∈ ⟨M⟩. Then:
▶ (Local Asymptotic Stability) For every τ > 0, there exists an r(τ) > 0 such that

the origin is a uniform (local) asymptotically stable equilibrium in B(0, r(τ))
of (SwHom) on Sdw(τ);

▶ (Diverging Solutions) In general, for every τ > 0, there exists z0 ∈ Rn and
σ ∈ Sdw(τ) such that lim supt→∞ |ϕF (t, z0,σ)| = +∞.

Again, the radius r(τ) and the norm of the �problematic� initial conditions, will depend
on the dwell time τ .
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Proof Technique: �Translation of Solutions�

Reduction to degree 1

Consider f ∈ Hk
n, (k ̸= 0) de�ne the reduction of degree 1 of f as the function

gf ∈ H1
n de�ned by gf (0) = 0 and gf (x) :=

|f(x)|
1
k

|f(x)| f(x), ∀x ∈ Rn \ {0}.

Translation of solutions

Given f , its reduction gf , there exists a time-scaling map θ : R≥0 × (Rn \ {0}) → R s.t.

ϕg(t,x) = ϕf (θ(t,x),x), ∀x ̸= 0,∀t ∈ R≥0.

▶ Given a homogeneous switched system we consider its reduction of degree 1, for
which classical results ([Morse '96]) hold;

▶ Using the function θ : R≥0 × (Rn \ {0}) → R we have qualitative properties of the
original system.

▶ The properties of θ strongly depend on (k > 1 or k < 1).
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Qualitative Behavior of θ

We use θ to construct safety/local stability and unboundedness/instability radii.

R1(τ)

τ

Case k > 1

|x|

θi(τG , ·)

Intuition: Slow solutions close to the
origin, fast far from it.

r1(τ)

τ

Case k < 1

|x|

θi(τG , ·)

Intuition: Fast solutions close to the
origin, slow far from it.
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Beyond Homogeneity

▶ Our proofs, as said, strongly depends on the possibility of �scaling the solutions�.

▶ But the crucial hypothesis in the proofs was the �extremal � nature of the
subsystems, i.e. the behavior of lim|x|→0+ |fi(x)|, and lim|x|→+∞ |fi(x)|.

Semi-global & practical dwell-time stability

Consider F = {fi}i∈⟨M⟩ ⊂ C1(Rn \ {0},Rn) and suppose that ẋ = fi(x) is GAS, for
each i ∈ ⟨M⟩. For every M > ε > 0 there exists a τ = τ(ε,M) > 0 such that

lim sup
t→+∞

|ϕF (t,x0,σ)| ≤ ε, ∀|x0| ≤ M , ∀σ ∈ Sdw(τ). ♠

Similarly, for every τ > 0 there exist ε = ε(τ) > 0 and M = M(τ) > 0 for which (♠)
holds.
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Summary of Section 3

▶ Given a set of GAS homogeneous systems, in general, the resulting switched
system is not dwell-time UGAS, for any dwell-time τ > 0.

▶ Proof technique based on �homogenization of degree 1�, and thus, once again, on
the strong properties of �linear� switched systems.

▶ We provided new results, showing how weaker stability/asymptotic properties
could be proved, depending on the behavior of the subsystems close and/or far
from the origin.
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Conclusions

Brief summary:

▶ In general, �slow switching� stabilization techniques cannot be translated, simply
mutadis mutandis, to the non-linear case.

▶ Studying the speci�c (local) properties of the non-linear systems one can conclude
weaker/local stability properties/asymptotic behavior.

Future Research:

▶ Adapting the proof techniques/ideas for more general classes of non-linear systems.

▶ A�ne switching systems, or more in general, subsystems not sharing the same
equilibrium as model for a multi-target game.
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Thank you!

And thanks to:
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