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Introductions

‣ Ph.D. Candidate at ETH Zürich 

‣ Studied at ETH Zurich, spent time in U.S. (California and 
Massachusetts) 

‣ Lived and worked in Singapore 

‣ Research e!orts: 

Co-design Game theory Applied Category Theory

Mobility Embodied intelligence



Mobility systems are under pressure

The rise of private mobility 
service providers calls 

for service design  and new 
regulation schemes

Transportation systems need to 
meet global sustainability goals 

Travel demand is increasing and 
travel needs are changing

55% of the population resides in 
cities. By 2050, the proportion is 

expected to reach 68%
Ride-hailing has increased by 

1,000% in NYC from 2012 to 2019

Cities are responsible for 60% of  
greenhouse emissions, 30% of which 
produced by transportation (in US)



Mobility systems are very complex socio-technical systems

Automotive 
industries 

(CEO Mercedes)

Liability 
(CEO SwissRe)

Mobility 
providers 
(CEO SBB)

Policy makers 
Politicians 
(Mayor ZH) Academics 

Tech developers



Complexity due to many interconnected components

sensing

coordination

computation

actuation

energetics communication
perception

planning

learningmapping

interaction

hardware
software behavior

localization

control

regulations

social 
acceptance

liability

An autonomous 
vehicle

=

anthropomorphization  
of 21st century 

engineering malaise

We forget why we made some choices, and we are 
afraid to make changes… 
These “computer” thingies are not helping us that 
much for design…

So many components (hardware, software, …),  
so many choices to make! 
Nobody can understand the whole thing!

“My dear, it’s simple: you lack  
a proper theory of co-design!”



Co-design across !elds and scales

City level

Service level

Platform level

Optimal resource allocation 

Optimal sensor and control choice

“Your system is just a component in another person’s system”

Optimal infrastructure choices

Subsystem level

Optimal deployment



We leverage co-design and game theory to solve complex socio-technical problems

Large interconnected system

Mathematical theory of co-design  
applied category theory

Many agents, many (often con!icting)  
interests

Game theory

Complex socio-technical system
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What is co-design?

task 
speci!cation

“automated designer”

minimize  
(resources usage)

subject to  
(functionality constraints)

optimal 
design(s)

catalogue 
of parts

expert 
 knowledge



A new approach to “co”-design

‣ A new approach to collaborative, computational, compositional, continuous design. 
designed to work across !elds and across scales. 

‣ Intended learning outcomes: 
- De"ning “design problems” for components (“functionality”, “resources”). 
- Modeling co-design constraints in a complex system. 
- E#cient solution to design queries.
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Frequency: 6.25 Hz
Computer: Nano

Sensor: Blackfly

Battery: LCO

Actuator: 1

Sensor: BlackflyBoard

Battery: NiH2

Actuator: 1

Sensor: Ace251gm

Battery: LCO

Actuator: 3

α: 1

Frequency: 12.5 Hz
Computer: TX1

α: 51.79

Frequency: 25 Hz
Computer: TX2

α: 719

“Co-design diagram”

Pareto front of optimal designs

optimization



“Co”-design desiderata

‣ Computational 
- Let the machine help us! 

‣ Collaborative 
- Pooling knowledge from experts across "elds. 

‣ Continuous 
- Design is not static: it should be reactive to changes in goals and contexts. 

‣ Compositional 
- My system is a component of somebody else’s system.

system		
architects

researchers

regulators

customers

investors

suppliers

?



The modeling challenge

‣ How to "nd a “theory of everything” across !elds… 
… that is still computationally and intellectually tractable? 

‣ Approach: focus on the interactions (co-design constraints).

design 
problem

design 
problem

design 
problem

“glue”



An abstract view of design problems
‣ Across "elds, design or synthesis problems are de"ned with 3 spaces: 

- implementation space: the options we can choose from; 
- functionality space: what we need to provide/achieve; 
- requirements/costs space: the resources we need to have available;

functionality 
(provided)

costs, 
resources 
(required)

implementations

 requirements 

dependencies

desired behavior 
  

speci"cations 

objectives 

guarantees

choices 

plans  

blueprints

“form”“function”

decision variables

“function”
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- implementation space: the options we can choose from; 
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- requirements/costs space: the resources we need to have available;

to maximize
choices
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 ordered sets with a bottom
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Posets model trade-o"s

���0,�� ��,�� A poset of positive-de"nite matrices

�1

�2

������ = 1

������ = 1

������ = 1

� ����(�) ������� � ������ ��� ���
� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�

��� �� ����(2)

Fondue

Cordon bleu in fondue

Cordon bleu

Croque et frites Quiche lorraine

American pastries



Posets model trade-o"s

A poset of sensor/algorithm pairs



Design problem with implementation (DPIs)

�� �

implementationsfunctionality requirements

���� ���

De�nition (Design problem with implementation). A design problem with im-
plementation (DPI) is a tuple

��,�, �, ����, ���� ,
where:� � is a poset, called functionality space;� � is a poset, called requirements space;� � is a set, called implementation space;� the map ����� � � � maps an implementation to the functionality it

provides;� the map ���� �� �maps an implementation to the resources it requires.



Transparent vs black-box models

‣ The DPI model is a “transparent” model: 
 
 
 
 
 

‣ DP model:  direct feasibility relation between functionality and resources (“black box”). 

‣ Monotonicity assumption:  
- Lower functionality does not require more resources;  
- More resources do not provide less functionality.

���, ��� �� � �� (� �� ����(�)) � (���(�) �� �)�� �op ◊����� ����

feasibility relation d

�� �

implementationsfunctionality requirements

���� ���



Graphical notation for DPIs

‣ We use this graphical notation:  
- functionality: green continuous wires on the left 
- requirements: dashed red wires on the right.

implementations

<latexit sha1_base64="3w1Yt1yKkegLWVf6oGnGvybiSSw="></latexit>I
��,��� ��,���Battery

mass [g]

cost [USD]

capacity [J]

max current [A]



Context informs the level of detail

‣ Di!erent scenarios will need di!erent levels of detail.

mass [ g ]

cost [ $ ]

capacity [ J ]

max current [ A ]
mass [ g ]capacity [ J ]

voltage [ V ]

operating  environment  
(e.g. temperature interval)

disposal cost [$]
# cycles 

charging time [J/s]

“back of the envelope 
calculation”

“vendor selection”

connector type

charging LED indicator



Model types

‣ “Catalogues”: already available designs 

‣ “First-principles”: analytical relations. 

‣ “Data-driven, on-demand” 
- The optimization algorithm will only ask for a sequence of data points speci"c to the 

queries. The model is constructed incrementally (experiments, black-box simulations). 
‣ Uncertain models



Re-stating existing knowledge in co-design form

‣ Take the usual setup for LQG control: 

‣ We can manipulate known results to state this DP theorem:

LQG Control tracking error �track
control e�ort �ef fort

observation noise �system noise�
delay �

dropping probability �

�ef fort = lim
���

�{������}

�track = lim����{������}

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

h



Convex Optimization Problems are Design Problems



Composition operators

“series”
“parallel” “feedback”

“convince two experts” 
“choose between   

two options”

� � �� � � �� � ��

� � � � ���
�
�

�
� �� ��� � � � ��

�
�

�
� �� ���

� �� � ��
� �� � � �� �

‣ The composition of any two DPs returns a DP (closure) 

‣ Very practical tool to decompose large problems into subproblems 
‣ This makes the category DP traced monoidal and locally posetal



Design queries

‣ Two basic design queries are: 
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources. 
- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided, 
what are the minimal resources required?

Given the resources that are available, what is  
the maximal functionality that can be provided?

  FixFunMinReq  

  FixReqMaxFun  

design problem
resource

resource

functionality

functionality
� �



Design queries

‣ Two basic design queries are: 
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources. 
- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality 

‣ The two problems are dual 
‣ From the solutions, one can retrieve the implementations (design choices)

Given the functionality to be provided, 
what are the minimal resources required?

Given the resources that are available, what is  
the maximal functionality that can be provided?
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Design queries

‣ Two basic design queries are: 
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources. 
- FixReqMaxFun: Fixed an upper bound on the resource, maximize the functionality 

 
 
 
 
 
 
 
 
 

‣ We are looking for: 
- A map from functionality to upper sets of feasible resources: 
- A map from functionality to antichains of minimal resources:

Given the functionality to be provided, 
what are the minimal resources required?

  FixFunMinReq  
design problem

resource

resource

functionality

functionality
� �

�� �� ���� �� ���� � �� ��



Optimization semantics

‣ This is the semantics of FixFunMinReq as a family of optimization problems.

for each node: for each edge:

chosen 
by user

objective

constraints

variables
! not convex 
! not di!erentiable 
! not continuous 
! not even de"ned on 

continuous spaces 

to minimize
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Monotone co-design problems are tractable

‣ We have a complete solution: guaranteed to "nd the set all optimal solutions, 
(If such set is empty, the algorithm trace is a certi"cate of infeasibility) 

‣ The complexity is not combinatorial in the number of options for each component 

‣ The complexity depends on the complexity of the interactions: the co-design constraints.

a options

b options

c options
O( a + b  + c)



Compositional approach to optimization

‣ Assume (for now) that all posets are "nite: results are "nite antichains of resources. 

‣ Suppose we are given the function  for all nodes in the co-design graph. 

‣ How to "nd the map  for the entire diagram? 
‣ Compositional approach:  

- Given that we have de"ned the diagram recursively using composition operations, 
we just need to work out the composition formulas. 

solution( composition(a, b)) =  composition( solution(a), solution(b))  

- This is equivalent to !nding a functor (monoidal and lattice-compatible) 
from the category DP to the category of solution maps.

�� � �� � ���

�� �� ��
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Compositional approach to optimization

‣ We can easily write the solution for all composition operations except feedback.

“feedback”

� � �� � � �� � ��

� �� � ��
� �� � � �� �

feedback is always the problem…

� � � � ���
�
�

�
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�
�

�
� �� ���
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Compositional approach to optimization

‣ We can easily write the solution for all composition operations except feedback.

“feedback”

� � �� � � �� � ��

� �� � ��
� �� � � �� �

feedback is always the problem…

� � � � ���
�
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�
� �� ��� � � � ��

�
�

�
� �� ���

�� � �� � �� ��,� � Min�� ��� (�) � ��(�)� .

�� #� � �� ��� � Min��
�

���� (�)��(�).

�� � �� � �� ��,� � Min�� ��� (�) � ��(�)� .

�� ��� �� � (� ◊ �)� � (� ◊�),��, ��� �� (�) ◊ ��(�),Check out the details of the solution in the book 

(Rely on Kleene’s Algorithm)



Developer vs. user view

‣ “Catalogues”: already available designs 

‣ “First-principles”: analytical relations.

Developer view 

‣ Applied category theory 
‣ Domain theory 



Use case: Co-design of an autonomous drone
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Co-design of an AV: systematic process

‣ Systematic modeling approach: 
- De!ne the task - what do we need to do? 
- Functional decomposition - how to decompose the functionality? 
- Find components - decompose until you "nd components (hardware and software) 
- Find common resources - In robotics, size, weight, power, computation, latency 

and add them. 
 

‣ Implementation: 
- Write a skeleton - write the structure using the formal language and the dependencies. 
- Populate the models: 

catalogues, analytic models, simulations



Functional decomposition in autonomy

‣ It is useful to think of a task (“function”) as a design problem: 

‣ Functional decomposition divides functionality and sums resources: 

‣ Note that composing tasks returns a task (compositionality) 

‣ In this example (urban driving):



Data $ow vs. logical dependencies

‣ In robotics, we are used to think about data $ow: 

‣ To "nd components, it helps to reason about logical dependencies:

decision  
making 

state 
estimation

sensing 
 data sensor

requires

requires requires

requires
algorithm

computationrequires
requires

computer

But why do we need a computer?

programmers
requires



Co-design of an autonomous vehicle
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Functional decomposition
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Co-design of lateral control 

‣ Lateral control itself can decomposed in sub-tasks:
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Co-design of longitudinal control

‣ Longitudinal control can be decomposed in sub-tasks:

Brake 
control
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Solution of DPs
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Monotonicity: Higher achievable speeds 
 will not require less resources
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energy externalities [kg/km]
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AV

Fix functionalities, look at minimal  
cost and discomfort  



Functional decompositions can be extended
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Functional decompositions can be extended
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Monotonicity of task complexity



Co-design across scales: Future Mobility

‣ We look at the problem from the perspective of municipalities and policy makers 
- Important decisions to make: 

How many AVs should we allow?        What’s the in!uence of AVs on public transit systems? 
How performant should they be?         How many trains should we buy? 

‣ Existing work only solves speci!c problems and does not co-design the whole system: 
- No joint design of mobility solutions and the system they enable  
- No modularity and compositionality: problem-speci"c 
- Often, not producing actionable information for stakeholders 

‣ Several disciplines involved (transportation science, autonomy, economics, policy-making) 

‣ We allow interfaces between them via co-design: 
- Functionality: demand to be satis"ed 
- Costs: investments ($), externalities (CO2 kg), service level (average waiting time, s) 

‣ Co-design highlights the structure of the problem and provides tools to reason about it



Mobility system co-design
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Mobility simulations  (optimizing !ow allocation on a network)

Subway: 
Fun: number of trains to buy 
Res: costs and externalities 
Imp: acquisition contracts

Micro mobility: 
Fun: cruise speed 
Res: costs and externalities 
Imp: vehicle models

AV: 
Fun: cruise speed 
Res: costs, externalities, performance 
Imp: vehicle models and autonomy

AV co-design



We can explode the model of the mobility system, and model AVs
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Mobility systems co-design

Fixed a demand, we "nd the Pareto front of 
incomparable, minimal solutions as 
cost, time, and externalities (CO2)

Which one is the best? Depends on what is at the upper level (policy-making, etc.)

Mobility system investments [USD]
service level [s]
externalities [kg]

demand

Results for real 
world case study  
of Washington D.C.

investments

se
rv

ic
e l

ev
el

0 ESs
0 trains

2500 AVs at 35 mph 

0 trains
500 ESs

2500 AVs at 40 mph 

0 trains
2500 ESs

2500 AVs at 50 mph 
4000 FCMs

56 trains

4000 AVs at 50 mph 
4000 FCMs

112 trains

Not a unique solution!



A lot of applications …

Embodied intelligence

Planning & Perception
Control & Perception

Autonomy-enabling Infrastructure

Resource-aware computation Nanorobot design for cancer treatment

Task-driven design of swarms of robots

Optimal Manufacturing
Automated soft-robot design

If you come up with other applications, let’s chat!

Electric motors design



Outlook

‣ We are in the evangelization phase: 
- We are writing divulgatory materials (textbook, classes). 
- We are looking for case studies.  

‣ Algorithmics: 
- A lot to do to make algorithms more e#cient… 
- How to best change the approximation of each model adaptively and dynamically? 

‣ Theory: 
- Finishing the rewrite in category theory. 
- Add space and time to the resources calculus. 
- De"ne game semantics (multiple agents). 

Will merge DP with linear logic.



Interactions between stakeholders are characterized by di"erent time horizons

Daily Monthly

Yearly Every "ve years



Take-aways

‣ A new approach to collaborative, computational, 
compositional, continuous design. 
- Designed to work across !elds and across scales. 
- Compositional horizontally and hierarchically. 
- Supports both data-driven and model-based 

components. 
- Computationally tractable. 
- Intellectually tractable. 

‣ If you are interested in using applied category theory: 
- https://applied-compositional-thinking.engineering 
- New online classes series announcement soon!
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Posetal Games

‣We present Posetal games. In short: 
- Each player expresses a partially ordered preference over a set of metrics (scores) 
- Based on preferences, players select an action from a decision space 
- Given the joint action pro!le of players, we obtain a game outcome for each player via a deterministic metric function 

‣ Preferences over metrics induce preferences over the decision space:

b and c are indi"erent 

b, c, d are preferred over a 

b, c are incomparable with d  

RA-L 2022: https://bit.ly/3cPsW9Y

https://bit.ly/3cPsW9Y
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