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Introductions

Appenzcl Ansserchaden

» Ph.D. Candidate at ETH Ziirich

» Studied at ETH Zurich, spent time in U.S. (California and
Massachusetts)

» Lived and worked in Singapore

» Research efforts:

Co-design Game theory Applied Category Theory

Mobility = Embodied intelligence




Mobility systems are under pressure

The rise of private mobility
service providers calls
for service design and new

Travel demand is increasing and
travel needs are changing

55% of the population resides in regulation schemes
cities. By 2050, the proportion is Ride-hailing has increased by
expected to reach 68% 1,000% in NYC from 2012 to 2019

Transportation systems need to
meet global sustainability goals

Cities are responsible for 60% of
greenhouse emissions, 30% of which
produced by transportation (in US)



Mobility systems are very complex socio-technical systems
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Complexity due to many interconnected components

software behavior coordination
hardware
: R lannin :
An autonomous _ actuation . localization P 5 social
hicl — sensing interaction acceptance
vEEe . control
computation : learning
: mappin : il
perception PpIng liability
energetics communication regulations

We forget why we made some choices, and we are

So many components (hardware, software, ...), .
Y P ( ) afraid to make changes...

so many choices to make! o .
These “computer” thingies are not helping us that

ing!
Nobody can understand the whole thing! much for design...

“My dear, it’s simple: you lack

anthropomorphization a proper theory of co-design!”

of 21st century —*
engineering malaise




Co-design across fields and scales

“Your system is just a component in another person’s system”

Optimal infrastructure choices

City level

ice level
Service leve Optimal deployment

Platform level Optimal sensor and control choice

Subsystem level - | Optimal resource allocation
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We leverage co-design and game theory to solve complex socio-technical problems

Complex socio-technical system
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Many agents, many (often conflicting)

Large interconnected system .
interests
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Mathematical theory of co-design

applied category theory Game theory
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What is co-design?

minimize
(resources usage)

subject to
(functionality constraints)

task
specification >

expert » | “automated designer” optimal
knowledge 5 > design(s)
catalogue >

of parts




A new approach to “co”’-design

» A new approach to collaborative, computational, compositional, continuous design.
designed to work across fields and across scales.

» Intended learning outcomes:
- Defining “design problems” for components (“functionality”, “resources”).
- Modeling co-design constraints in a complex system.

- Efficient solution to design queries.

“Co-design diagram”
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“Co”-design desiderata

» Computational

- Let the machine help us!

system
architects
] ?
» Collaborative
- Pooling knowledge from experts across fields.
researchers

suppliers

» Continuous

- Design is not static: it should be reactive to changes in goals and contexts.

» Compositional

- My system is a component of somebody else’s system.

investors

regulators

customers



The modeling challenge

» How to find a “theory of everything” across fields...
... that is still computationally and intellectually tractable?

» Approach: focus on the interactions (co-design constraints).
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An abstract view of design problems

» Across fields, design or synthesis problems are defined with 3 spaces:
- : the options we can choose from:;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘ < ‘ ................................... > ‘
Junctionality COsts,
(provided) resources
(required)
desired behavior
specifications requlrements
objectives dependencies
guarantees

“function” “function”



An abstract view of design problems

» Across fields, design or synthesis problems are defined with 3 spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

choices

Partiall .. C ..
y to maximize o minimize

ordered sets with a bottom

\\ (F, <p) —(R,=R)




An abstract view of design problems

» Across fields, design or synthesis problems are defined with 3 spaces:
- implementation space: the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘4* . ................................... »‘

choices

Partiall .. C ..
y to maximize to minimize

ordered sets with a bottom

\\ (F, <p) —(R, =R)

implementations

—

Battery
capacity |J| — N M - - - mass|g]

max current [A| — - - --cost|USD]

(F, <p) (R, =R)




Posets model trade-offs

(Rsp, <) (N, <) A poset of positive-definite matrices
Croque et frites Quiche lorraine A =<ppmmn) B
\ / XTAX < XTBx VxeR"
American pastries
Cordon bleu in fondue 1 0 34 —1/8 1/2 0
A=l 1] B=Zs B4 e=l0 2
X2
XTBx =1
4 B )
|
PoM(2) A €

Fondue Cordon bleu



A poset of sensor/algorithm pairs

Accuracy |m]|

Posets model trade-offs

Distance from obstacle [m]
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Design problem with implementation (DPIs)

Definition (Design problem with implementation). A design problem with im-
plementation (DPI) is a tuple

(F,R,I,prov,req),

where:

> F is a poset, called functionality space;

> R is a poset, called requirements space;

> I is a set, called implementation space;

> the map prov: I — F maps an implementation to the functionality it
provides;

> the mapreq: I — R maps an implementation to the resources it requires.

F I R
®
p prov. e .___.i__r_e(_:|____+.
® ®

functionality implementations requirements



Transparent vs black-box models

» The DPI model is a “transparent” model:

F I R
®
p prov. e .__35__r_eg|____+.
® ®

» DP model: direct feasibility relation between functionality and resources (“black box”).

feasibility relation d

d: F° X R —p,, Bool
(f*,rY>3diel: (f <gprov(i)) A(req(i) <g 1)

» Monotonicity assumption:
- Lower functionality does not require more resources;

- More resources do not provide less functionality.



» We use this graphical notation:

- functionality: green continuous wires on the left
- requirements: dashed red wires on the right.

capacity [J| —

max current [A| — Ji

amazon

o

AA Eatteries

an -  batteres

AAA Batleries

Graphical notation for DPIs

Battery
A M b - - - mass|g]
- - --cost|USD]
v
implementations

OV Batteries

D Battenes

C Batteries

<R9 5R>



Context informs the level of detail

» Different scenarios will need different levels of detail.

oo “back of the envelope

capacity | J | ) R "SR mass [ g | o
calculation ”
E Em=3 LIR18650 Datasheet
Edtion: WOV. 2008
5. BASIC CHARACTERISTICS
Ncminal C ity: 2600mAh (0.52A Discharge,
51 Capacty (2850 275V) ry;a;pg:gacny= 2550mAh ( 0.52A Dis:g\a'ge.
' U 275V Minimum Capacity: 2500mAh [0.52A

? A lacharge, 275V}

- 5.2 Nominal Valtage 37V
5.3 Interral Impedga‘:wce =70mQ
5.4 Discharge Cut-off Vcitage 3.0V
5.5 Max Charge Vbitage 4.20+£005v

. . 5 6 Standard Charge Current 0 524

v v 5.7 Rapid Charge Cu-rent 1.3A
5.8 Standard Discharge Current 0524
5.8 Rapid Discharge Cumrent 1.3A
5.10 Max Pulse Discharge Current 2.8A

4 N\ S5.11 Weight - 4'5‘.;1.12
. T iameteri@). 18.4mm
capacity [J] —of @ mass [ g] S vogec_eszmm
) e ~45C
5.13 Operating Temperatura Disch?rgs: 220 ~6)°C
maX Current [ A ] _.l I.l COSt [ $ ] 5.14 Storage Temperature Durng 1 month: =5~ 35°C Curing B monlhs: 0~ 35°C
11 . 29
voltage [V] —o| _ _ o vendor selection — —
- " TECRIE charging time [J/s]
# cycles ——e
: U I TITTTE disposal cost
operating environment ® P 8]
(e.g. temperature interval) P connector type
charging LED indicator —1
J




Model types

E Em= LIR18650 Datasheet
Li-ion Battery
Edtion: NOV. 2010

“Catalogues”: already available designs

5. BASIC CHARACTERISTICS

Nominal Capacity: 2600mAh (0.52A Discharge,
. . 2.75V) Tygical Capecity: 2550mAh (0.52A Discharge.
.1 Capacity =5%C y
51 Copacity (25=5T) 275V Minimum Capacity: 2500mAh [0.52A
Discharge. 2.75Y)
5.2 Nominal Valtage KAl
a ma,;o n Al - batteres 5.2 Inferral Impedance = 70mQ
5.4 Discharge Cut-off Vcitage 3.0V
5.5 Max Charge Voltage 4.20£005v
. : 5 6 Standard Charge Current 0524
- -;2-3':,"35&‘ “- w =i A 5.7 Rapid Charge Cuent 1.3A
- e e “ i B S -
i M.-g.‘l"'&?bu. > k e o A 5.8 Standard Discharge Current 0524
id iu -n;"_‘.":hé id 7 , ‘i I Y& ,i i2 5.9 Rapid Discharge Current 1.3A
og A E g ¥} - Vg g 5.10 Max Pulse Discharge Current 2.6A
0“ $ JI= (<) " ot h! P g
gl ke ® . 5 sv‘ 5-3‘" Q = 5.11 Weight 455119
LIS "
)*E"-" ‘ 512 Max Dimenson Diameteri ). 18.4mm
. ) ) ) ) Height (H):  65.2mm
AA Eatteries AAA Batleries 9V Batteries D Batteries C Batteries 513 Operating T Charge:  0~45C
"1 Operating Tempershurs Dischargs:  -20 ~ 6)C
5.14 Storage Temperature Durng 1 month: =5~ 35°C Curing B monlhs. 0~ 35°C

T —

T

“First-principles”: analytical relations.

10000 Superkondensator

eh(spiral wound)

NaNi
(Zebra

Spezifische Leistung auf Zellebene (W /'kg)

€0 80 100 120 140 160 180 200

Spezifische Energie auf Zellebene (\Wh/kqg)

» “Data-driven, on-demand”

- The optimization algorithm will only ask for a sequence of data points specific to the
queries. The model is constructed incrementally (experiments, black-box simulations).

» Uncertain models



Re-stating existing knowledge in co-design form

» Take the usual setup for LQG control:

lz; = Az dt + Bu,df + Edw; .
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Convex Optimization Problems are Design Problems

minimize  fo(x)
rER™

subjectto  fi(z) <0, i=1,...,m
Ax = b

Theorem (Convex Optimization Problem as Monotone Map)

A convex optimization problem is a monotone map CvxOpt from (C, <¢) X (Fe, =g, ) t0 (R, <%).
CvxOpt : {C, Z¢) X <-7'_c Fc> —pos (R, XR’)
<Dfa f0> — p

where p = mg Jolx)and Dy = {z € R" | fi(z) < 0,i € [m], Az = b}.
z€Dy



Composition operators

“parallel” “feedback”

“choose between
two options”

» The composition of any two DPs returns a DP (closure)

» Very practical tool to decompose large problems into subproblems

» This makes the category DP traced monoidal and locally posetal



Design queries

» Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixRegMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

. _ design problem
functionality —¢ b - - - resource

» W »
functionality —¢ ;@) B - - - resource

12

FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?



Design queries

» Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixRegMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

. _ design problem
functionality —¢ b - - - resource

: ' :
functionality —¢ ;@) B - - - resource

12

FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

» The two problems are dual

» From the solutions, one can retrieve the implementations (design choices)



Design queries

» Two basic design queries are:
- FixFunMinReq: Fixed a lower bound on functionality, minimize the resources.

- FixRegMaxFun: Fixed an upper bound on the resource, maximize the functionality

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

design problem

functionality —« r N - - - - resource
i ,.f ~ :
functionality —d ;@’ p- - - - resource

» We are looking for:
- A map from functionality to upper sets of feasible resources: n: F -UR .

- A map from functionality to antichains of minimal resources: 7 : F — AR

28500 1 O =025

'g 400 0 ™~

@) o

— 300 : h 020

%200 ° =

S 100 . ° ?3 0.15

- o

Q>§ O - O + o
0.10L =

0 102030405060
endurance [min]

110.0 110.5 111.0 111.5
total cost [USD]



Optimization semantics

» This is the semantics of FixFunMinReq as a family of optimization problems.

--------------------------------------------------------------------------------------------------------
.
* .

r —e ) e, . — C e
chosen f .[j. ..... @_. : ___________ e r to minimize
by user . e
f r :
@P £ o d, e
1 <
variables rr € (Ry, —Rk> fr € (Fy, 5Fk> | not convex
I not differentiable
constraints  for each node: for each edge: | not continuous
I not even defined on
continuous spaces
F vy P
Jrk—q di p---Tk F“@—‘[:
d(frr) =T ri =
objective Min 7

<



Monotone co-design problems are tractable

» We have a complete solution: guaranteed to find the set all optimal solutions,
(If such set is empty, the algorithm trace is a certificate of infeasibility)

» The complexity is not combinatorial in the number of options for each component

a options c options

O(a+b +c)
b options

» The complexity depends on the complexity of the interactions: the co-design constraints.



Compositional approach to optimization

» Assume (for now) that all posets are finite: results are finite antichains of resources.

y» Suppose we are given the function 5y @ Fy — ARy for all nodes in the co-design graph.

SN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NEEEEEEEEEEER,
. g
* *

—o - .
3 o e
r
l’lk: Fk—>./4Rk .

3 .
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» How to find the map h: F — AR for the entire diagram?

» Compositional approach:

- Given that we have defined the diagram recursively using composition operations,
we just need to work out the composition formulas.

solution( composition(a, b)) = composition( solution(a), solution(b))

- This is equivalent to finding a functor (monoidal and lattice-compatible)
from the category DP to the category of solution maps.
FixFunMinReq

DP(F;R) ———————» ( F —P>AR)
0S



Compositional approach to optimization

» We can easily write the solution for all composition operations except feedback.

hgsgt A — AC he ® hg : (AxC) > A(BxD),
a - 1\£in U hg(s). (a,c) = he(a) X hg(c),
—C s€he(a)

.\ S——— V2 b---B Y. VSRR N — YA b----B
A—g}---B A—dgp---B
heVhg 1 A— AB, he ANhg © A — AB,

@ = Min (hg(a) U fig(@) a = Min (he(a) N hg(a))

feedback is always the problem...

“feedback”




Compositional approach to optimization

» We can easily write the solution for all composition operations except feedback.

A —=—

hfgg - A
a Check out the details of the solution in the book
he problem...
(Rely on Kleene’s Algorithm)
B
A - - -
s N S—
C

A—q8F---B A—qBF---B

he Vhg : A — AB, he Ahg : A — AB,

@ = Min (hg(a) U hg(a)). a = Min (he(a) N hg(a)).



Developer vs. user view

Developer view » “Catalogues”: already available designs

catalogue {
provides capacity [J]

» Domain theory requires mass [g]
requires cost [USD]

» Applied category theory

500 knh
648 KWh

model! »— 10@ g, 18 USD
modelZ +— 208 g, 288 USD

«—
—

608 kWh «—= model3 ~— 250 g, 150 USD
«—

Applied 788 kin
Compositional
Thinking }
for
Engineers

modeld - 400 g, 488 USD

» “First-principles”: analytical relations.

mcdp {
provides capacity [J]
requires mass [kg]
specific_energy_Li_Ion = 580 Wh / kg

required mass >= provided capacity / specific_energy_Li_Ion




Use case: Co-design of an autonomous drone

( speed [m/s] )
- EO_W_ef EVY] ___________ _@ total
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Use case: Co-design of an autonomous drone

Motors + propellers

| total cost
I [CHF]

A
Catalogue of : Catalogue of
algorithms ( speed [m/s] power [W] ]‘n"v SEnSors -
.. N o1 i S s power [
o /] Actuation [~ massTo " 7777 @_ @_, e ~— + p-----= ---
Solving LQG - 2] resolution potwer [W] @_/ )
problems ¥, [px/sterad. Vision cost [CHF] =
e observe - @-I—. = A Catalogue of
" at 5 [Hz) B Sensor _ | mass[g]
e, : Feature acquisition '@— al Orith ns
**+, control effort E o frequency [Hz] . } T 4 8
: xtraction | impl. feature der
system T S @ at 5 [Hz] )} Implement L[] computation [op/s]
noise W LQG S precision - | Feature 3 o
C ontr Ol ______________________ 1mpl. contro N
1 . @ \ at  [Hz] Implement computation [op/s]I
- tracking error 1 P~ T :
@1—‘ Control o \ .
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number of missions MlSSlf)Il L ___ @ / LN 7
Planning = I
4 1
mission time [s] 1 cost [C_I—_Ilf]_ @ |
energy stored [J] B =~ \_ total mass:-
______ d r I
4 © attery pmeslel o ~ [g_] :
Catalogue of g|......... T > |
batteries power [W] @ ) E E
— Computing bt HEL S J o
spreslel ) / o
‘.“ @ total computation [op/s] E :
Catalogue of '\ ) E
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Co-design of an AV: systematic process

» Systematic modeling approach:
- Define the task - what do we need to do?
- Functional decomposition - how to decompose the functionality?
- Find components - decompose until you find components (hardware and software)

- Find common resources - In robotics, size, weight, power, computation, latency
and add them.

» Implementation:
- Write a skeleton - write the structure using the formal language and the dependencies.
- Populate the models:

catalogues, analytic models, simulations



Functional decomposition in autonomy

» It is useful to think of a task (“function™) as a design problem:

| - — - cost [CHF|
environment —¢ - - - power [W]
fUIlCtiQIl-SpCCiﬁC Task - = = computation [op/s]
performance - — - mass [g]

» Functional decomposition divides functionality and sums resources:

a5k implement | resources |
al | 2]
i _ - ) total
performance ( . " sub-task 1 . a

—— functional [_ . subtask 1 a resources
environmendt (]ECOII]pOSitiOH ~~ sublask 2 a

) implement |
. v
sub-task 2 resources 2

» Note that composing tasks returns a task (compositionality)

1 [ J ) b d . w
» In this example (urban driving): urban driving

/ \\\\\)
follow lane
/ T
lateral control longitudinal control
maintain lane brake in case
position of obstacles




Data flow vs. logical dependencies

» In robotics, we are used to think about data flow:

computer
state
command controller éstimate
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controller
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data
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decision TI€quIICS state
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making estimation
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\
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sensing
data

» To find components, it helps to reason about logical dependencies:

requires
—> Sensor

requires
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But why do we need a computer?

requires

——>» computer




Co-design of an autonomous vehicle
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Functional decomposition
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Co-design of lateral control
» Lateral control itself can decomposed in sub-tasks:

Catalogue of extractors Catalogue of algorithms
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Co-design of longitudinal control

» Longitudinal control can be decomposed in sub-tasks:
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Functional decompositions can be extended

urban driving

urban driving
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Functional decompositions can be extended
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Co-design across scales: Future Mobility

» We look at the problem from the perspective of municipalities and policy makers
- Important decisions to make:
How many AVs should we allow?  What’s the influence of AVs on public transit systems?

How performant should they be? How many trains should we buy?

» Existing work only solves specific problems and does not co-design the whole system:
- No joint design of mobility solutions and the system they enable
- No modularity and compositionality: problem-specific

- Often, not producing actionable information for stakeholders
» Several disciplines involved (transportation science, autonomy, economics, policy-making)
» We allow interfaces between them via co-design:

- Functionality: demand to be satisfied

- Costs: investments ($), externalities (CO; kg), service level (average waiting time, s)

» Co-design highlights the structure of the problem and provides tools to reason about it



Mobility system co-design

g \Mobility simulations (optimizing flow allocation on a network)
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We can explode the model of the mobility system, and model AVs
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Mobility systems co-design

Fixed a demand, we find the Pareto front of
incomparable, minimal solutions as
cost, time, and externalities (CO.)

-
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Mobility system
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Which one is the best? Depends on what is at the upper level (policy-making, etc.)

b - - - investments |
»- - - - service level |
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Results for real

world case study
of Washington D.C.



A lot of applications ...

Embodied intelligence Autonomy-enabling Infrastructure
Control & Perception
Planning & Perception Task-driven design of swarms of robots
Resource-aware computation Nanorobot design for cancer treatment

Automated soft-robot design
Optimal Manufacturing

Electric motors design

If you come up with other applications, let’s chat!



Outlook

» We are in the evangelization phase:
- We are writing divulgatory materials (textbook, classes).

- We are looking for case studies.

» Algorithmics:
- Alot to do to make algorithms more efficient...
- How to best change the approximation of each model adaptively and dynamically?

» Theory:
- Finishing the rewrite in category theory.
- Add space and time to the resources calculus.
- Define game semantics (multiple agents).

Will merge DP with linear logic.



Interactions between stakeholders are characterized by different time horizons
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Take-aways

» A new approach to collaborative, computational,
compositional, continuous design.

- Designed to work across fields and across scales.
- Compositional horizontally and hierarchically.

- Supports both data-driven and model-based
components.

- Computationally tractable.

- Intellectually tractable. 4 AV ol operiomaco2
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https://applied-compositional-thinking.engineering

Posetal Games

» We present Posetal games. In short:
- Each player expresses a partially ordered preference over a set of metrics (scores)
- Based on preferences, players select an action from a decision space

- Given the joint action profile of players, we obtain a game outcome for each player via a deterministic metric function

» Preferences over metrics induce preferences over the decision space:

b
b and c are indifferent a "%}
b, c, d are preferred over a C
b, c are incomparable with d
. N
collision d

| S
area violation clearance

RA-L 2022: https://bit.ly/3cPsW9Y
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