
Convex liftings in control design. Connections
with inverse optimality and path planning

Sorin Olaru

Laboratory of Signals and Systems, CentraleSupélec, France
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Motivation

Motivation

Emergence of Piecewise Affine (PWA) formulations in control design

hinging hyperplanes model (identification), piece-wise linearisation, hybrid
systems, etc;
(static) nonlinearities in the feedback channel, constrained control design
methods (anti-windup, Model Predictive Control, interpolation-based control),
approximations of nonlinear state-feedback.

3 / 50



Motivation

Motivation

Emergence of Piecewise Affine (PWA) formulations in control design

PWA models representing the dynamics

hinging hyperplanes model (identification), piece-wise linearisation, hybrid
systems, etc;

PWA controllers

(static) nonlinearities in the feedback channel, constrained control design
methods (anti-windup, Model Predictive Control, interpolation-based control),
approximations of nonlinear state-feedback.

3 / 50



Motivation

Motivation

Emergence of Piecewise Affine (PWA) formulations in control design

PWA models representing the dynamics
hinging hyperplanes model (identification), piece-wise linearisation, hybrid
systems, etc;

PWA controllers

(static) nonlinearities in the feedback channel, constrained control design
methods (anti-windup, Model Predictive Control, interpolation-based control),
approximations of nonlinear state-feedback.

3 / 50



Motivation

Motivation

Emergence of Piecewise Affine (PWA) formulations in control design

PWA models representing the dynamics
hinging hyperplanes model (identification), piece-wise linearisation, hybrid
systems, etc;

PWA controllers
(static) nonlinearities in the feedback channel, constrained control design
methods (anti-windup, Model Predictive Control, interpolation-based control),
approximations of nonlinear state-feedback.

3 / 50



Motivation

Motivation

Emergence of Piecewise Affine (PWA) formulations in control design

PWA models representing the dynamics
hinging hyperplanes model (identification), piece-wise linearisation, hybrid
systems, etc;

PWA controllers
(static) nonlinearities in the feedback channel, constrained control design
methods (anti-windup, Model Predictive Control, interpolation-based control),
approximations of nonlinear state-feedback.

3 / 50



Motivation

Illustrative problem: constrained MPC

Minimization (or minimax in the robust case) of a finite-time optimal control
performance index in the presence of input, state constraints and using a PWA
prediction model:

J(uk , xk) =
N−1∑
i=0

{
∥Qxk+i|k∥1/2/∞ + ∥Ruk+i|k∥1/2/∞

}
+ ∥Pxk+N|k∥1/2/∞

s.t.
xk+1 = gpwa(xk , uk , wk)
xk+i|k ∈ X, uk+i|k ∈ U for i = 0...N − 1
xk+N|k ∈ XT

Attractive features:
piece-wise convex formulation
finite dimensional optimization over uk = [uk , . . . , uk+N−1]
piece-wise affine dependence of the optimum on parameters
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Motivation

Explicit constrained control formulations (MPC)

For polyhedral constraints, and linear prediction model, the MPC design leads to:

(Implicit) Parametric optimization:

u∗(x) = arg min
u

uT Hu + (xT F + C)u

s.t. Gu ≤ Ex + W

Explicit solution:

u∗(x) = fpwa :
N⋃

i=1

Xi ⊂ Rdx −→ Rdu

x 7−→ f T
i x + gi for x ∈ Xi
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Xi ⊂ Rdx −→ Rdu

x 7−→ f T
i x + gi for x ∈ Xi

Explicit vs. implicit MPC formulation:
avoid iterative search
numerous regions to store
difficult point-location problem

Our objective: revert to implicit MPC but
use the minimal number of optimization
arguments.
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Motivation

Further motivations: inverse optimality of PWA
control

Recalling the inverse optimality studies:

R. E. Kalman. When is a linear control system optimal?
Trans. ASME J., 1964.
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Further motivations: inverse optimality of PWA
control

Recalling the inverse optimality studies:

R. E. Kalman. When is a linear control system optimal?
Trans. ASME J., 1964.

Our objective: answer (constructively) to the questions:
”when is a PWA (control) function optimal?”
”what (convex) optimal control formulation?”
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Motivation

The mathematical formalism - to fix the ideas

Polyhedral partition
A collection of N ∈ N+ full-dimensional polytopes Xi ⊂ Rd is called a polyhedral
partition if:

1 X =
⋃

i∈IN
Xi is a compact set in Rd .

2 int(Xi)
⋂

int(Xj) = ∅ with i ̸= j , (i , j) ∈ I2
N ,

Also, (Xi ,Xj) are called neighbours if (i , j) ∈ I2
N , i ̸= j and dim(Xi ∩ Xj) = d − 1.
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Motivation

Problem statement – inverse optimal PWA control

Given a polyhedral partition X =
⋃

i∈IN
Xi ⊂ Rdx and a continuous piecewise

affine function fpwa : X → Rdu , find
A convex cost function: J(x , u, z),
A set of convex constraints describing the feasible domain by the pair of
matrices Hx , Hu, Hz , K

such that
fpwa(x) = ProjRdu arg min

[uT z]T
J(x , u, z),

subject to Huu + Hx x + Hzz ≤ K .

8 / 50



Motivation

Several bad news and some hope
The following constructions are not valid:

cost functions involving the PWA control:

min
u

∥u − fpwa(x)∥

convex cost and convex h(x) coupled with the PWA constraints:

min
u,z

z subject to {z ≥ h(x); u = fpwa(x)}

A good news (existence):
M. Baes, M. Diehl, and I. Necoara. ”Every continuous nonlinear control system
can be obtained by parametric convex programming.” IEEE Transactions on
Automatic Control (2008).

However:
Both the cost and constraints choice are generic and do not pertain to a
manageable form (linear/quadratic)
The results are not constructive (how many constraints?, what structure?,
dimension of the optimization?)
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Convex liftings Basic notions

Main concept and formal definition

Tackle the non-convexity of the PWA functions by lifting its partition to an
extended space.
Ensure the existence of an inverse operator in terms of projection that can
retrieve the original partition.

Convex liftings
Given a polyhedral partition X =

⋃
i∈IN
Xi ⊂ Rdx , a piecewise affine lifting is

described by a function:

zpwa : X → R
x 7→ zpwa(x) = AT

i x + ai for x ∈ Xi ,

where Ai ∈ Rdx and ai ∈ R.
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Convex liftings Basic notions

Basic pre-treatement
The continuity at the frontier of the polyhedral regions induce geometrical
constraints for the piece-wise affine function.

The polyhedral partition impose regularity of the partition’s frontiers for
non-trivial solutions.

Non-restrictive assumption: polyhedral partition −→ cell complex
A cell complex C is defined as a set of polytopes provided:

every face of a member of C is itself a member of C.
the intersection of any two members of C is a face of each of them.

12 / 50



Convex liftings Basic notions

Basic pre-treatement
The continuity at the frontier of the polyhedral regions induce geometrical
constraints for the piece-wise affine function.

Polyhedral partition defined as a cell complex.

Non-restrictive assumption: polyhedral partition −→ cell complex
A cell complex C is defined as a set of polytopes provided:

every face of a member of C is itself a member of C.
the intersection of any two members of C is a face of each of them.

12 / 50



Convex liftings Basic notions

Regularization in view of convex lifting
Convex lifting on polyhedral partition
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Convex liftings Basic notions

Convex liftings

From the construction of the lifting (and its convexity) it follows that the
projection of the epigraph on the original space Rdx retrives the original
partition X =

⋃
i∈IN
Xi .
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Convex liftings Existence conditions

Some historical references

James Clerk Maxwell(1831-1879),
Scottish, mathematician, physicist

He is the first one putting forward the
notion of reciprocal diagram of a cell
complex which is isomorphic to
convex lifting in the plane R2.

Links the geometrical problem to the
notion of k−stress
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Convex liftings Existence conditions

Mechanical implication of convex lifting

What elastic coefficients generate steady positions with the same (x , y)
coordinates independent on the vertical coordinates.
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Convex liftings Existence conditions

Historical remarks about k−stress

n(F , C) inward unit normal vector to C at its facet F
s(C) ∈ R: stress on the face C

A real-valued function s(·) defined on the (k − 1)−faces of a polyhedral cell complex K ⊂ Rk is
called a k−stress if at each internal (k − 2)−face F of K :∑

C|F⊂C

s(C)n(F , C) = 0, (1)

where this sum ranges over all (k − 1)−faces in the star of F (the (k − 1)−faces such that F is
their common facet). The quantities s(C) are the coefficients of the k−stresses, are called a
tension if the sign is strictly positive, and a compression if the sign is strictly negative.
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Convex liftings Existence conditions

k−stress
s(AE)nAE + s(AF )nAF + s(AB)nAB + s(AC)nAC = 0,

nAE =
−→
AE
AE

, nAF =
−→
AF
AF

, nAB =
−→
AB
AB

, nAC =
−→
AC
AC

A

B

C
D

E
F

G

H

I
J

K
L

M
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Convex liftings Existence conditions

Convex lifting – existence conditions

Computational geometry

it admits a strictly positive d−
stress,

it is an additively weighted
Dirichlet-Voronoi diagram,

it is an additively weighted
Delaunay diagram,

it is the section of a
(d + 1)−dimensional
Dirichlet-Voronoi diagram,

it has a dual partition.

Gueorgui Feodossievitch Voronoi
(1868-1908)
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Convex liftings Existence conditions

Constructive (effective numerical) solutions were missing for:

test of convex liftability for general partitions in Rdx

effective construction of convex liftings functions
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Convex liftings Constructive algorithm

Construction of convex liftings

An approach

Input: A given cell complex X =
⋃

i∈IN
Xi ⊂ Rdx .

Output: (Ai , ai), ∀i ∈ IN .

1: Register all couples of neighboring regions in the cell complex X .
2: For each couple (i , j) ∈ I2

N such that (Xi ,Xj) are neighbors:

(continuity)AT
i v + ai = AT

j v + aj ,∀v ∈ vert(Xi ∩ Xj).
(convexity)AT

i u + ai > AT
j u + aj ,∀u ∈ vertXi , u /∈ vert(Xi ∩ Xj).

3: define a cost function: f (A, a) =
∑

i∈IN

∥Ai∥+ |ai |

4: min
Ai ,ai

f (A, a) subject to the constraints (continuity+convexity)
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Convex liftings Constructive algorithm

Construction of convex liftings

Important step forward:

Feasibility of a LP problem ←→ Convex liftability

With the convex lifting’s epigraph describing the convex set:

X̃ = conv


[

v
z(v)

]
∈ Rdx +1 | v ∈

⋃
i∈IN

vertXi ,

z(v) = AT
i v + ai if v ∈ Xi

 .

The projection of its faces are retriving the regions of the original partition.
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Convex liftings Nonconvexly liftable partitions

Non-convexly liftable partitions

Infeasibility of the construction is equivalent to non-convex liftability

How to deal with non-convexly liftable partitions?
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Convex liftings Nonconvexly liftable partitions

Nonconvexly liftable partitions
Main result
Given a non convexly liftable polyhedral partition X =

⋃
i∈IN
Xi ⊂ Rd , there

exists at least one subdivision, preserving the internal boundaries of this partition,
such that the new cell complex is convexly liftable.

Proof:
The key point of the proof is the notion of hyperplane arrangement.
Interestingly this relates with Maxwell’s k−stress existence conditions.

Nguyen, N.A., Olaru, S., Rodriguez-Ayerbe, P., Hovd, M. and Necoara, I., 2014, June. On the lifting problems
and their connections with piecewise affine control law design. In European Control Conference (ECC), 2014.
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Applications for PWA control design Solution to inverse parametric L/QP

Solution to Inverse Parametric L/Q Program

Given a polyhedral partition X =
⋃

i∈IN
Xi ⊂ Rdx and a continuous piecewise

affine function fpwa : X → Rdu , find
A convex cost function: J(x , u, z),
A set of convex constraints describing the feasible domain by the pair of
matrices Hx , Hu, Hz , K

such that
fpwa(x) = ProjRdu arg min

[uT z]T
J(x , u, z),

subject to Huu + Hx x + Hzz ≤ K .

Assumptions
The given partition X is convexly liftable (proved this can be obtained by
pre-treatement)
X is a partition of a polytope.
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Applications for PWA control design Solution to inverse parametric L/QP

Constructive solution

1. Construct a convex lifting zpwa(x) of the given cell complex X =
⋃N

i=1 Xi
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2. Construct constraint set Π[xT z uT ]T :

Vx =
N⋃

i=1
vert(Xi), V[xT z]T =

{[
x

z(x)

]
| x ∈ Vx

}

V[xT z uT ]T =


 x

z(x)
fpwa(x)

 | x ∈ Vx


Π[xT z uT ]T = conv V[xT z uT ]T
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Applications for PWA control design Solution to inverse parametric L/QP

Constructive solution

3. Inverse optimal solution:[
z∗

u∗

]
(x) = arg min

[z uT ]T
z

s.t.
[
xT z uT ]T ∈ Π[xT z uT ]T .

4. The original PWA function is obtained by restricting to the appropriate
subcomponent of the above optimal vector:

u∗ = ProjRdu

[
z∗

u∗

]
= fpwa(x).
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Applications for PWA control design Solution to inverse parametric L/QP

Inverse Parametric L/QP

Complexity of Parametric linear/quadratic programming
Any continuous PWA function defined over a polyhedral partition can be obtained
by a parametric linear/quadratic programming problem with at most one
supplementary 1-dimensional variable.

Parametric linear programming
The parameter space partition associated with an optimal solution to a parametric
linear programming problem admits affinely equivalent polyhedra
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Applications for PWA control design Applications to linear MPC designs

Linear MPC
Minimize:

J(U, xk) =
{∑N−1

i=0 xT
k+i|kQxk+i|k + uT

k+i|kRuk+i|k

}
+ xT

k+N|kPxk+N|k

or
J(U, xk) =

{∑N−1
i=0 ∥Qxk+i|k∥1/∞ + ∥Ruk+i|k∥1/∞

}
+ ∥Pxk+N|k∥1/∞

s.t.
xk+i+1 = Axk+i + Buk+i
xk+i|k ∈ X, uk+i|k ∈ U for i = 0...N − 1
xk+N|k ∈ XT

Explicit solution:

u∗(x) = fpwa :
N⋃

i=1
Xi ⊂ Rdx −→ RN×du

x 7−→ fix + gi for x ∈ Xi
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Applications for PWA control design Applications to linear MPC designs

Applications to linear MPC

The continuous explicit solution of a generic linear MPC problem with respect to
a linear/quadratic cost function is equivalently obtained through a linear MPC
problem with a linear or quadratic cost function and the control horizon at most
equal to 2 prediction steps.

Hint: the lifting represents the only auxiliary variable needed to convexify the
MPC solution: 

fpwa(xk) = ProjRdu arg min
[uT

k uT
k+1]T

J(xk , uk , uk+1),

s.t. Huuk + Hzuk+1 + Hx x ≤ K .
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Applications for PWA control design Applications to linear MPC designs

Double integrator 1/2

Double integrator model

xk+1 =
[

1 0.5
0 1

]
xk +

[
0.125
0.5

]
uk Q = 10 ∗ I2, R = 0.5, N = 5

yk =
[

1 0
]

xk −2 ≤ uk ≤ 2, −5 ≤ yk ≤ 5

J = xT
k+5|k Pxk+5|k +

∑4
i=0

(xT
k+i|k Qxk+i|k + uT

k+i|k Ruk+i|k )

Polyhedral partition Associated PWA function
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Applications for PWA control design Applications to linear MPC designs

Control of a damped cantilever beam

xk+1 =
[

0.867 1.119
−0.214 0.870

]
xk +

[
9.336e-4
5.309e-4

]
uk

yk =
[

1 0
]

xk

with |u| ≤ 120, Qx = CT C , and Qu = 1e-4

(a) original PWA control law (N = 40, 3397
polyhedra)

(b) PWA obtained via IpLP vith clipping
(N = 2, 811 polyhedra)
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Applications for PWA control design Applications to linear MPC designs

Case-study example

task execution time [s]

Formulation N = 10 20 30 40 50
Standard MPC problem

mpQP 6.3 24.2 91.6 171.9 356.2

Extended IpLP problem
convex lifting 0.1 0.3 0.5 0.6 1.8

facet enumeration 0.05 0.07 0.12 0.17 0.23
constraint removal 2.8 14.9 38.3 74.3 135.3

mpLP 1.7 7.3 24.5 90.8 150.5
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Applications for PWA control design Region-free MPC

The convex lifting as a point location mechanism

Explicit MPC is based on the evaluation of a PWA function which stores the
partition and performs a point location
The convex lifting can perform a region-free point location through:

the selection of the unique active constraint of the optimization:

i∗(x) = arg max
i∈IN

AT
i x + ai

evaluation of the corresponding PWA branch:

fpwa(x) = f T
i∗(x) ∗ x + gi∗(x)

aside the memory storage, the advantage of this solution resides in:
effective (direct) use of the MPC explicit solution
reduced pre-processing time due to the vertex enumeration and feasible
domain construction through convex-hull operation
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Applications for PWA control design Region-free MPC

Region-free MPC: cross-platforms experiments

Changing the formulation from complete inverse optimal solution to region-free
implemntaion based on convex lifting

will further reduce the non-volatile memory footprint by a factor of ≈ 1.6 for
both numerical precision cases
the TET will be reduced anywhere from a factor of ≈ 1.5–7.7 (averaging
around 4) which depends on architecture and clock speed.
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Applications for PWA control design Fragility handling and PWA control retuning

The fragility of Convex Lifting

Consider a linear system

xk+1 = gpwa(xk , uk)
uk = F T

i xk + gi , xk ∈ Xi , i ∈ {1, · · · , 4},

with X =
4
∪

i=1
Xi

Nominal closed loop fulfills the stability and
performance criteria

Issue: fragility of the polyhedral partition.
Difficulty: the reconstruction of explicit
PWA control is costly.
Objective: retuning of the controller
Xi → X̃i , xk+1 ∈ X without reconstruction
of the explicit PWA formulation.

Figure: Original convex lifting

Figure: Disturbance within a
half-plane representation.
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The fragility of Convex Lifting
Region-free implementation of the PWA control via convex-lifting:

Construct a relevant convex lifting:

l(x) = AT
i x + ai , i ∈ Xi

Properties of convex lifting:

∀x ∈ Xi −→ i : max
r

ãT
r x + b̃r , (2a)

∀x ∈ X \ Xi −→ j : max
r

ãT
r x + b̃r , j ̸= i (2b)

Construct the covering of each cell Xi which guarantees the invariance
of X in closed loop.
Condition for partition retuning:

∀x ∈ X \ X i −→ j : max
r

ãT
r x + b̃r , j ̸= i, (3)

Resulting re-tuned PWA control partition:

i : max
r

ãT
r x + b̃r , ∀x ∈ X̃i −→ X̃i ⊂ X i (4)

Undergoing work with Songlin Yang and Pedro Rodriguez: see ECC’ 2023.

Figure: Initial convex lifting

Figure: Alternative convex lifting
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ãT
r x + b̃r , j ̸= i, (3)

Resulting re-tuned PWA control partition:

i : max
r

ãT
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ãT
r x + b̃r , ∀x ∈ X̃i −→ X̃i ⊂ X i (4)

Undergoing work with Songlin Yang and Pedro Rodriguez: see ECC’ 2023.

Figure: Initial convex lifting

Figure: X̃i and X i

Figure: Alternative convex lifting
39 / 50



Applications in path planning

Outline
1 Motivation

2 Convex liftings
Basic notions
Existence conditions
Constructive algorithm
Nonconvexly liftable partitions

3 Applications for PWA control design
Solution to inverse parametric L/QP
Applications to linear MPC designs
Region-free MPC
Fragility handling and PWA control retuning

4 Applications in path planning
Navigation in cluttered environments
Towards improved navigation corridors

5 Conclusions and perspectives

40 / 50



Applications in path planning Navigation in cluttered environments

Navigation through multi-obstacle environment
Topic of interest in several fields

Autonomous road vehicles
Unmanned aerial vehicles
Naval vehicles

Motion planning is divided into three main tasks
(i) Path planning
(ii) Trajectory generation
(iii) Low-level feedback control

Main difficulty for i) and ii): non-convexity of the
obstacle-free area

The search for collision avoiding paths is
nontrivial
Needs for tools for the modelization of the
obstacle-free area
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Applications in path planning Navigation in cluttered environments

The mathematical framework

No obstacles lying in a finite dimensional space X ⊂ Rd

Pi ∈ Com
(
Rd)

: obstacles as compact (convex) sets
in Rd

Pi ∩ Pj = ∅: non overlapping sets
P =

⋃No
i=1 Pi

CX(P): the (non-convex) obstacle-free area

Path definition
Given the obstacles P, a corridor between two points x0, xf ∈ int (CX(P)) is characterized
by the existence of two continuous functions

γ : [0, 1] → CX(P), ρ : [0, 1] → R≥0 (5)

satisfying γ(0) = x0, γ(1) = xf , and γ(θ) ⊕ B0,ρ(θ) ⊂ CX(P), ∀ θ ∈ [0, 1]. Then a corridor
is defined as

Π = {x ∈ Rd : ∃θ ∈ [0, 1] s.t. x ∈ γ(θ) ⊕ B0,ρ(θ)}
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Applications in path planning Navigation in cluttered environments

Overview on convex lifting approach
A lift and project philosophy:

Step 1. Computation of a PWA convex lifting associated with each obstacle: z(x) = aT
i x + bi , with ai , bi s.t.

min
ai ,bi

No∑
i=1

|[ai bi ]T |2
2subject to aT

i v + bi ≥ aT
j v + bj + ϵ, ∀v ∈ V (Pi ) , ∀i ̸= j,

aT
i v + bi ≤ M, ∀v ∈ V (Pi ) , ∀i,

Step 2. Construction of the d + 1 dimensional polyhedron

P =
{[

x
z

]
∈ Rd+1 :

[
aT

i − 1
] [

x
z

]
≤ −bi , i ∈ I

}
Step 3. Projection of facets of P into X to obtain a collection of sets {Xi }No

i=1

(1) Pi ⊂ int
(

Xi
)

, ∀ i

(2) Xi ∩ Pj = ∅, ∀ j ̸= i
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Applications in path planning Navigation in cluttered environments

From partition to corridors

1. Define of a graph Γ = (N , E, f ), f : E → R, based on the partition {Xi }No
i=1

N =
⋃No

i=1
V (Xi )

E: the facets of the patition cells

2. Connect of x0, xf to Γ: extended graph Γ̃

3. Run a graph search algorithm (e.g. Dijkstra’s algorithm): the result is γ(θ)

4. Construct the corridor as the union of sub corridors

Πi =
{

x ∈ Rd : ∃θ̃ ∈ [0, 1] s.t. x ∈ γi (θ̃) ⊕ B0,ρi (θ̃)

}
where γi (0) = xi and γi (1) = xi+1
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Applications in path planning Navigation in cluttered environments

Example for obstacle avoidance using the obtained
path and MPC
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Applications in path planning Towards improved navigation corridors

Corridors enlargement problem
1. In order to compare the corridors one needs a performance index

Average width of the corridors associated to the partition

2. Using this criterion, the enlargement of the cells within the partition can be
sought

Idea: different obstacles displacement lead to different partitions
Force the LP problem at the basis of convex lifting to return a different partition
The virtual reorganization of obstacles has to ensure the feasibility of the
corridors with respect to the original arrangement
Repeat the computation of the new partition as long as it is possible to
rearrange the obstacles
The existence of different partitions is ensured by the next result

Monotonic improvement
Consider a sequence of collections of obstacles Pk inducing corridors that are
feasible with respect to P0 = P ∀ k ≥ 0, and such that Pk+1

i ⊃ Pk
i . Suppose that

Pk+1
i “touches” X k

i . As long as Pk is convex liftable, then the width of the
corridors monotonically increases.
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Applications in path planning Towards improved navigation corridors

Virtual obstacles: scaling based on Farkas’ Lemma

Idea: enlarge as much as possible the obstacles
Problem formulation: consider Q ⊂ H, where

Q = {x ∈ Rd : Aqx ≤ bq}, Aq ∈ Rq×d , bq ∈ Rq,

H = {x ∈ Rd : Ahx ≤ bh}, Ah ∈ Rh×d , bp ∈ Rh

Find the maximum scaling factor λM and the center of
scaling cq such that the enlarged Qλ ⊆ H, where

Qλ = {x ∈ Rn : Aqx ≤ λbq + (1 − λ)Aqcq},

Based on the Extended Farkas’ Lemma, λM and cq are
computed as solution of

min
cq ,µ1,µ2,Ũ

µ1

s.t. ŨAq = µ1Ah, Ũbq − Apcq ≤ µ2, bhAqcq ≤ bq

µ1 − µ2 = 1, µ1 ≥ 1, µ2 ≥ 0
Ũi,j ≥ 0, i = 1, ..., h, j = 1, ..., q.

Then λM = 1 + 1/µ2
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Applications in path planning Towards improved navigation corridors

Numerical results
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Conclusions and perspectives

Conclusions and perspectives

In a general perspective
Convex lifting pertain to the class of lift and project methods
They allow to tackle in a convex optimization framework design problem that
are notoriously complex

Main results:
Provided a constructive inverse optimality result for any PWA control law
Allow a region-free MPC implementation
Open the way to robustification of PWA control (see PWA fragility)
Provided a path planning tool for cluttered environments

Open problems:
Inverse optimal MPC control with minimal prediction horizon based on a
nominal model
Commensurate the fragility of PWA controllers
Properly define and construct the optimal corridor with respect to width and
constrained navigation margins.
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