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lllustrative problem: constrained MPC

Minimization (or minimax in the robust case) of a finite-time optimal control
performance index in the presence of input, state constraints and using a PWA
prediction model:

N—1
Jui, i) = 3 {1 Q@xksitkllrj2/o0 + | Ruksitkllr/2/00 } + | PXcsniill1/2/00
i=0

s.t.

Xk+1 = Gowa(Xk, Uk, Wk)
Xerik € X, trie € Ufor i =0..N—1
Xeynjk € X7

Attractive features:

@ piece-wise convex formulation

e finite dimensional optimization over ux = [ug, ..

L) uk-‘rN—l]

@ piece-wise affine dependence of the optimum on parameters
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Explicit constrained control formulations (MPC)

For polyhedral constraints, and linear prediction model, the MPC design leads to:

(Implicit) Parametric optimization: Explicit solution:
N
. = fowa : X; C R* — R%
u”(x) = arg min uTHu+(xTF+ C)u u(x) = fowa Ul c
u i

st. Gu< Ex+ W X »—>f,-Tx+g,-forX€X,-
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i=1
st. Gu< Ex+ W X »—>f,-Tx+g,-forX€X,-

u*(x) = arg min u’ Hu + (x'F + C)u

Explicit vs. implicit MPC formulation:
@ avoid iterative search N
@ numerous regions to store
@ difficult point-location problem
Our objective: revert to implicit MPC but 7

use the minimal number of optimization [
arguments.
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Further motivations: inverse optimality of PWA

control

Recalling the inverse optimality studies:

R. E. Kalman. When is a linear control system optimal?
Trans. ASME J., 1964.

R. E. KALMAN

Research Institute for Advanced Studies
(RIAS), Baltimore, Md.

When Is a Linear Control System Optimal?

The purpose of this paper is to formulate, study, and (in certain cases) resolve the
Inverse Problem of Optimal Control Theory, which is the following: Given a control
law, find all performance indices for which this control law is optimal.

Under the assumptions of (a) linear constant plant, (b) linear constant control law,
(¢) measurable state variables, (d) quadratic loss functions with constant coefficients,
(e) single control variable, we give a complele analysis of this problem and oblain various
explicit conditions for the optimality of a given conirol law. Aninteresting feature of the
analysis is the central role of frequency-domain concepts, which have been ignored in
optimal control theory until very recently. The discussion is presented in rigorous math-
ematical form.

The central conclusion is the following (Theorem 6): A stable control law is optimal
if and only if the absolute value of the corresponding return difference is at least equal
to one at all frequencies. This provides a beautifully simple connecting link between
modern control theory and the classical point of view which regards feedback as a means
of reducing component variations.
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Further motivations: inverse optimality of PWA
control

Recalling the inverse optimality studies:

R. E. Kalman. When is a linear control system optimal?
Trans. ASME J., 1964.

Our objective: answer (constructively) to the questions:
@ "when is a PWA (control) function optimal?”

e "what (convex) optimal control formulation?"
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The mathematical formalism - to fix the ideas

Polyhedral partition
A collection of N € N, full-dimensional polytopes X; C RY is called a polyhedral
partition if:
Q@ X =g, A is a compact set in R?.
Q int(X)) Nint(X)) = 0 with i # j, (i,j) € I3,
Also, (X;, X;) are called neighbours if (i,j) € Z3, i # j and dim(X; N &;) =d — 1.
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Problem statement — inverse optimal PWA control

Given a polyhedral partition X = UiEIN X; C R% and a continuous piecewise
affine function fpu, : X — R, find
@ A convex cost function: J(x, u, z),

@ A set of convex constraints describing the feasible domain by the pair of
matrices H,, H,, H,, K
such that
fowa(X) = Projga, arg min _ J(x, u, z),

[T 2"

subject to Hyu+ Hyx+ H,z < K.
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Several bad news and some hope

The following constructions are not valid:

@ cost functions involving the PWA control:

min 6 fous ()]

@ convex cost and convex h(x) coupled with the PWA constraints:

min z subject to {z > h(x); u = fowa(x)}

A good news (existence):
M. Baes, M. Diehl, and I. Necoara. "Every continuous nonlinear control system
can be obtained by parametric convex programming.” IEEE Transactions on
Automatic Control (2008).

However:
@ Both the cost and constraints choice are generic and do not pertain to a
manageable form (linear/quadratic)
@ The results are not constructive (how many constraints?, what structure?,
dimension of the optimization?)
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Outline

@ Convex liftings
@ Basic notions
@ Existence conditions
@ Constructive algorithm
@ Nonconvexly liftable partitions
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Main concept and formal definition

@ Tackle the non-convexity of the PWA functions by lifting its partition to an
extended space.

@ Ensure the existence of an inverse operator in terms of projection that can
retrieve the original partition.

Convex liftings

Given a polyhedral partition X = | J X; C R%, a piecewise affine lifting is

described by a function:

i€Zy

Zowa : X = R

X = zpwa(X) = A,TX +a; for xe X,‘,

where A; € R% and a; € R.
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Basic pre-treatement

@ The continuity at the frontier of the polyhedral regions induce geometrical
constraints for the piece-wise affine function.

@ The polyhedral partition impose regularity of the partition's frontiers for
non-trivial solutions.

Non-restrictive assumption: polyhedral partition — cell complex
A cell complex C is defined as a set of polytopes provided:
@ every face of a member of C is itself a member of C.

@ the intersection of any two members of C is a face of each of them.
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Convex liftings [EESINSTNN

Regularization in view of convex lifting

Convex lifting on polyhedral partition

Given a polyhedral partition X = U,.GIN X; C R%, a piecewise affine lifting is
described by a function:

Zowa : X = R
X = pra(X) = A,TX +a; for xe X,‘,

where A; € R% and a; € R.
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Regularization in view of convex lifting

Convex lifting on polyhedral partition
Given a polyhedral partition X = U,.GIN X; C R%, a piecewise affine lifting is
described by a function:

Zowa : X = R

X = zpwa(X) = A,TX +a; for xe X,',

where A; € R% and a; € R.

Convex liftings on cell complex |

Given a cell complex X = U,.GIN X; C R%, a piecewise affine lifting
z(x) = Al x + a; ¥x € X, is called convex piecewise affine lifting if the following
conditions hold true:

@ z(x) is continuous over X,
e for each i € Iy, z(x) > Al x + aj for all x € X\ X} and all j # i, j € Ty.

13/50



Basic notions

Convex liftings

e From the construction of the lifting (and its convexity) it follows that the
projection of the epigraph on the original space R% retrives the original

partition X' = 7, Xi
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Some historical references

@ James Clerk Maxwell(1831-1879),
Scottish, mathematician, physicist

@ He is the first one putting forward the
notion of reciprocal diagram of a cell
complex which is isomorphic to
convex lifting in the plane R?.

@ Links the geometrical problem to the
notion of k—stress
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Mechanical implication of convex lifting

What elastic coefficients generate steady positions with the same (x, y)
coordinates independent on the vertical coordinates.
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Historical remarks about k—stress

n(F, C) inward unit normal vector to C at its facet F
s(C) € R: stress on the face C

A real-valued function s(-) defined on the (k — 1)—faces of a polyhedral cell complex K C R* is
called a k—stress if at each internal (k — 2)—face F of K:

> s(o)n(F,c) =o, (1)
C|Fcc

where this sum ranges over all (k — 1)—faces in the star of F (the (k — 1)—faces such that F is
their common facet). The quantities s(C) are the coefficients of the k—stresses, are called a
tension if the sign is strictly positive, and a compression if the sign is strictly negative.
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k—stress

S(AE)nag + s(AF)nar + s(AB)nag + s(AC)nac = 0,

AE AF AB AC

nNaAg = EJ’AF = EJ’AB: E:”AC: E
)
J M
G ‘4!IIIIIII||II
D
H
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Convex lifting — existence conditions

Computational geometry

@ it admits a strictly positive d—
stress,

@ it is an additively weighted
Dirichlet-Voronoi diagram,

@ it is an additively weighted
Delaunay diagram,

@ it is the section of a
(d + 1)—dimensional

Dirichlet-Voronoi diagram,

@ it has a dual partition.

-B

A
P78

Gueorgui Feodossievitch Voronoi

(18681908)
_ b ,:,,A

——

ﬂ‘ﬂ%::"
l ’ 4

1!.
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Convex liftings Existence conditions

Constructive (effective numerical) solutions were missing for:

e test of convex liftability for general partitions in R%

o effective construction of convex liftings functions
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Construction of convex liftings

An approach

Input: A given cell complex X = |

ez, X C R*.
i€Zy
Output: (A,’, a,-), Vi € Iy. J

1: Register all couples of neighboring regions in the cell complex X.

2: For each couple (i, ) € I3, such that (X;, X;) are neighbors:
(continuity)A v + a; = AJ-TV + a;, Vv € vert(X; N X}).
(convexity) Al u+ a; > AjTu + a;,Yu € vertX;, u ¢ vert(X; N X;).

3: define a cost function: f(A,a) = > ||Aill + |ai]

i€Ly

4: Tin f(A, a) subject to the constraints (continuity-+convexity)
i»ai
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Construction of convex liftings

Important step forward:

Feasibility of a LP problem <— Convex liftability

@ With the convex lifting's epigraph describing the convex set:

4 d+1
€ R% v E vertX,
[Z(V)} | 9

z(v)y=Alv+a if veux,

X = conv

@ The projection of its faces are retriving the regions of the original partition.
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Non-convexly liftable partitions

o Infeasibility of the construction is equivalent to non-convex liftability

How to deal with non-convexly liftable partitions?
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Nonconvexly liftable partitions

Main result

Given a non convexly liftable polyhedral partition X = UieIN X; C RY, there
exists at least one subdivision, preserving the internal boundaries of this partition,
such that the new cell complex is convexly liftable.

Proof:

The key point of the proof is the notion of hyperplane arrangement.
Interestingly this relates with Maxwell’s k—stress existence conditions.

Nguyen, N.A., Olaru, S., Rodriguez-Ayerbe, P., Hovd, M. and Necoara, 1., 2014, June. On the lifting problems

and their connections with piecewise affine control law design. In European Control Conference (ECC), 2014.
24./50



.
Outline

© Applications for PWA control design
@ Solution to inverse parametric L/QP
@ Applications to linear MPC designs
@ Region-free MPC
@ Fragility handling and PWA control retuning

25 /50



Solution to inverse parametric L/QP
Solution to Inverse Parametric L/Q Program

Given a polyhedral partition X = UieIN X; C R% and a continuous piecewise
affine function fpu 1 X — R%, find
@ A convex cost function: J(x, u, z),

@ A set of convex constraints describing the feasible domain by the pair of
matrices H,, H,, H,, K
such that
fowa(X) = Projga, arg min . J(x,u,2),
[uT 2]

subject to Hyu+ Hyx + H,z < K.

Assumptions

@ The given partition X is convexly liftable (proved this can be obtained by
pre-treatement)

@ X is a partition of a polytope.
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Constructive solution

1. Construct a convex lifting zpwa(x) of the given cell complex X = vazl X
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Constructive solution

1. Construct a convex lifting zpwa(x) of the given cell complex X = vazl A
2. Construct constraint set [+, 77

Ve = ’_Qvert(%)» Vir a7 = {[Z();)] X< VX}
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Constructive solution

1. Construct a convex lifting zpwa(x) of the given cell complex X = vazl X;
2. Construct constraint set I'I[XTZ T

V, = LNJvert(Xi)a Vixr 27 = {L();)} | xe VX}

i=1
X
V[xTz u™lm — Z(X) | x € Vi
fpwa(x)

I_I[XTZ UT]T = conv \/[XTZ UT]T
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Applications for PWA control de: Solution to inverse parametric L/QP
Solution
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Constructive solution

3. Inverse optimal solution:
Z*
X)=arg min_ z
{“*}( )

T
s.t. [XTZ UT] € I_I[XTZ UT]T'

4. The original PWA function is obtained by restricting to the appropriate
subcomponent of the above optimal vector:

*

u* = Proj g, [i*} = fowa(X).
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Inverse Parametric L/QP

Complexity of Parametric linear/quadratic programming

Any continuous PWA function defined over a polyhedral partition can be obtained
by a parametric linear/quadratic programming problem with at most one
supplementary 1-dimensional variable.

Parametric linear programming

The parameter space partition associated with an optimal solution to a parametric
linear programming problem admits affinely equivalent polyhedra

o

30/50



Applications for PWA control design Applications to linear MPC designs
Linear MPC

Minimize:

J(U, xi) = {Z =0 Xk+:|kQXk+f\k + “k+,\kR“k+/|k} +Xk+N\kPX’<+N|k
or

N—
I, ) = {2 1 @ritblloe + IRt il e § + 1Pkl

Xptit1 = AXqi + Bugy
s.t. Xi+ilk € X, Uktilk € Ufori=0.N-1
XNk € X7

Explicit solution:

N
u*(x) = fowa UX, C R% — RV*d
i=1
x +— fix+ g for x € &;
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Applications to linear MPC

The continuous explicit solution of a generic linear MPC problem with respect to
a linear/quadratic cost function is equivalently obtained through a linear MPC
problem with a linear or quadratic cost function and the control horizon at most
equal to 2 prediction steps.

Hint: the lifting represents the only auxiliary variable needed to convexify the
MPC solution:

T

fowa(Xk) = Projge, arg  min . J(xk, Uk, Uk+1),
Uk UT

k+1

s.t. Hyug + Hyuge1 + Hix < K.
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Double integrator 1/2

Double integrator model

1 0.5 0.125
Xk+1:[0 1:|Xk+|:0_5}uk Q=10xh,R=05N=5

ve=1[1 0]x —2< <2, -5<y <5

— T 4 T T
J = X5 1 PXicts |k + Eizo(xk+i\koxk+i|k + Uy Rtk i)

Polyhedral partition Associated PWA function

PWA function ver 16 regons

PWA fucsion ove 15 regions

—————
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Double integrator 1/2

Double integrator model

1 05 0.125
Xk+1:[0 1j|Xk+|:0.5j|le Q=10xhL,R=05N=5

ve=1[1 0]x —2<u <2, -5<y <5

_ T 4 T T
J = X5 PXicrs e + Z;:o(xk+i\kQXk+ilk + Uy R i)

Equivalent formulations

Standard MPC problem IOPCP
min J minTz
! [z /]
st: =5 < [1 0] xeqip <5 st
=2 < Upgipe <2 « 24%4 24
<
0<i<4 Huzk <K HeR"™ KeR
Xieys|k € X

33/50



Double integrator 1/2

Double integrator model

1 05 0.125
Xk+1:[0 1j|Xk+|:0.5j|le Q=10xh,R=05N=5

Yk = [1 O] Xk

—2<u <2, 55y <5

_ T 4 T T
J = X5 PXicrs e + Zizo(xk+i\kQX‘<+i|‘< + Uy R i)

Equivalent formulations

Standard MPC problem
min J

st: =5 < [1 0] xeqip <5
=2 < Uppipe <2
0<i<4a
Xk+5|k € Xr

s.t:
H

Xk
Uk+1
Uk

IOPCP
min U1

[“k+1 ‘-’,;r]

< K, HeR** K ecR*
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Applications for PWA control design Applications to linear MPC designs

Control of a damped cantilever beam

_[os67 1119] . [9.336:-4
Xkl = | _0.214 0.870| ** T [5.300E-4 | Y

Yk = [1 0] Xk

with |u] €120, Q. = C"C, and Q, = 1r-4

(a) original PWA control law (N = 40, 3397 (b) PWA obtained via IpLP vith clipping
polyhedra) (N = 2, 811 polyhedra)
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Case-study example

Applications for PWA control design Applications to linear MPC designs

Formulation
Standard MPC problem
mpQP

Extended IpLP problem
convex lifting
facet enumeration
constraint removal
mpLP

task execution time [s]

10

6.3

0.1
0.05
2.8
1.7

20 30 40
24.2 91.6 171.9
0.3 0.5 0.6

0.07 0.12 0.17
14.9 38.3 74.3
7.3 24.5 90.8

50

356.2

1.8

0.23
135.3
150.5
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The convex lifting as a point location mechanism

@ Explicit MPC is based on the evaluation of a PWA function which stores the
partition and performs a point location

@ The convex lifting can perform a region-free point location through:

e the selection of the unique active constraint of the optimization:

. T
i"(x) = argmax A; x + a;
i€y

e evaluation of the corresponding PWA branch:

fowa(X) = Filix) * X + 8iv(x)

@ aside the memory storage, the advantage of this solution resides in:

o effective (direct) use of the MPC explicit solution
e reduced pre-processing time due to the vertex enumeration and feasible
domain construction through convex-hull operation
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PWA control de: Region-free MPC

Region-free MPC: cross-platforms experiments

Online implementation via Algorithm 4 using £7(x), " (x) obtained per Section I-C1 using 11(x), 7' (x) obtained per Section 11-C2
Precision double 1 aion h==="ni~)\e" the i dou 1, ati ipel
P P
Metriest ROM RAM  TET ROM RAM. T ROM., RAM TET
_— — — E— reglon-?feeevaluatm —
g _ H = £ = £
) H Z = z El H
g oz e I S z = E
g2 2 5 2 2 = g 2 I
Z : g g E 3 3 [Z\E E H 3]
% = o g = 5 B =%z = ] g
s £ 8 5 5 & & |B 8 g s
MCU type [ o z 3 o o o <] z
STM32FOSIRST6® 48 64 8[22836 37180 35 21788 552 [1075]283 9280 10008 197 536 [ 5.84 {154
STM32FO30RST6 48 64 (22820 37180 5 58 21788 360 552 268 9264 10008 197 536 | 5.86 145
STM32FI00RB 24128 8|23014 37182 5 2179 5 376 9354 10910 198 536 635 P12
STM3LIORCT6 325 16[23504 37182 5 2179 552 [1025 f25 9934 10910 204 536 | 654 fi63
STM3LISZRCT6 32 2532|2359 37182 5 21790 368 5 38 §235 0930 10010 204 536 | 583 fis6
STM32F303VCT6 61 256 40(14100 46464 24 73 170 8197 195 536 | 095 | 12
STM32F401VCT6 84 256 64|13832 4664 5 20 11502 8198 192 536 lo040f 4
STM32F407VGT 168 1024 192 | 14084 46464

7 11754 8198 195 536 §o21f 1
6 11874 8198 196 536 §0.19f 1
6 12174 8198 199 536 Yeof 1

TET/ (clock x DMIPS/MHz),  \J

STM32F429Z1 180 2048 256 | 14204 46464 5
STM32F746NGH6 M7 216 1024 340 | 14504 46464 5
T ROM (non-volatile, read-only memory) = CODE (program) + DATA (satic v
DMIPS  Dhrystone MIPS (millions of instructions per second).
# The embedded target used in the experiments in Fig. 8.

2 23248 312 536
L T ——

Changing the formulation from complete inverse optimal solution to region-free
implemntaion based on convex lifting

o will further reduce the non-volatile memory footprint by a factor of ~ 1.6 for
both numerical precision cases

o the TET will be reduced anywhere from a factor of ~ 1.5-7.7 (averaging
around 4) which depends on architecture and clock speed.
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Fragility handling and PWA control retuning
The fragility of Convex Lifting

Consider a linear system J
o~ R, R,
— 0 : R
Xk41 = pwa(Xi, Uk)
T . i hx = by
uk:Fi Xk+gian€Xivl€{1a”'v4}v g R,

. 4
with &' = ,-Sl X Figure: Original convex lifting

o Nominal closed loop fulfills the stability and
performance criteria
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Fragility handling and PWA control retuning
The fragility of Convex Lifting

Consider a linear system J

oy R, R,
X1 = 8pwal( Xk, k) ” -
T . : b= B
uk:Fi Xk+gian€Xivl€{1a”'v4}v B R,

with X = ’_Ql X;

o Nominal closed loop fulfills the stability and
performance criteria

@ Issue: fragility of the polyhedral partition.

o Difficulty: the reconstruction of explicit
PWA control is costly.

@ Objective: retuning of the controller .
X = A&}, xk+1 € X without reconstruction "X

of the explicit PWA formulation. Figure: Disturbance within a
half-plane representation.
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Fragility handling and PWA control retuning
The fragility of Convex Lifting

Region-free implementation of the PWA control via convex-lifting: ’ @
@ Construct a relevant convex lifting: ,
T ; IS
I(x) =A/ x+a;,i € X; : %

@ Properties of convex lifting: Figure: mitial convex lifting
VX€X,‘*>I’ZI‘T‘IBX§:-X+B,, (2a)
r
Vx € X\ X — j:max3 x+b,j#i (2b)
r

39/50




Applications for PWA control design Fragility handling and PWA control retuning

The fragility of Convex Lifting

Region-free implementation of the PWA control via convex-lifting:

@ Construct a relevant convex lifting:
T .
I(x) =A/ x+a;,i € X;
@ Properties of convex lifting:
VxGX,-Hi:maxé;rquE,, (2a)
r

Vx € X\ X — j:max3 x+b,j#i (2b)
r

@ Construct the covering of each cell X; which guarantees the invariance
of X in closed loop.

Undergoing work with Songlin Yang and Pedro Rodriguez: see ECC’ 2023.

Flgu Fe: Initial convex lifting

)
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Fragility handling and PWA control retuning
The fragility of Convex Lifting

Region-free implementation of the PWA control via convex-lifting: :
@ Construct a relevant convex lifting: ’
T . ‘

I(x) =A/ x+a;,i € X; A %

@ Properties of convex lifting:

VxGX,-Hi:maxé;rquE,, (2a)
r

Vx € X\ X — j:max3 x+b,j#i (2b)
K =

@ Construct the covering of each cell X; which guarantees the invariance
of X in closed loop.

@ Condition for partition retuning:

Figure: % and %,

i

VXEX\?,—>j:max§;rx+B,,j7£i, 3)
@ Resulting re-tuned PWA control partition: x;
i:maxérTx+l~J,,Vx€)P,'*>2€',-CT,- (4) o
r

Flgu Fe: Alternative convex lifting
Undergoing work with Songlin Yang and Pedro Rodriguez: see ECC’ 2023. 39/50
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Navigation in cluttered environments
Navigation through multi-obstacle environment

@ Topic of interest in several fields

@ Autonomous road vehicles
@ Unmanned aerial vehicles
@ Naval vehicles

@ Motion planning is divided into three main tasks
(i) Path planning
(ii) Trajectory generation
(iii) Low-level feedback control

@ Main difficulty for i) and ii): non-convexity of the
obstacle-free area
@ The search for collision avoiding paths is
nontrivial

@ Needs for tools for the modelization of the
obstacle-free area
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Navigation in cluttered environments
The mathematical framework

e < @ N, obstacles lying in a finite dimensional space X C RY
=
“ Ay, e P; € Com (Rd): obstacles as compact (convex) sets
° A/ . ' in R4
a_ b e PN P; = (: non overlapping sets
sV v o P= UN° P;
20 AA = Uiz i

[ S e Cx(P): the (non-convex) obstacle-free area

Path definition
Given the obstacles IP, a corridor between two points xo, xr € int (Cx(P)) is characterized
by the existence of two continuous functions

~v:[0,1] = Cx(P), p:[0,1] = R0 (5)

satisfying v(0) = xo, ¥(1) = X¢, and ¥(0) @ By, ,0) C Cx(P), V6 € [0,1]. Then a corridor
is defined as

N={xecR’: 39 c[0,1] s.t. x €~(0) ® By ()}
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Overview on convex

A lift and project philosophy:
Step 1. Computation of a PWA convex lifting associated with each obstacle: z(x) = a,-Tx + b;, with a;, b; s.t.
No
. T2 . T T L
min E [[ai bj]" |3subject to a; v+ bi > a; v+ bi+e YveEV(P), Vi#],
aj;bj
i=1

alv4+ b <M, YveV(P), Vi,

Step 2. Construction of the d + 1 dimensional polyhedron

P:{[ﬂ e R . [a,T —1] [’z‘} §—b,-,i€I}

Step 3. Projection of facets of P into X to obtain a collection of sets {X,-};V:"1
(1) Pj Cint (x,-), Vi
(2) X; NP =0,Vj#i
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Navigation in cluttered environments
From partition to corridors

&~ woN

Define of a graph ' = (N, €, f), f : € — R, based on the partition ~‘[X,-]»:V:"1
o N =% Voo
@ &: the facets of the patition cells
. Connect of xp, xr to I': extended graph i
Run a graph search algorithm (e.g. Dijkstra’s algorithm): the result is v(6)
. Construct the corridor as the union of sub corridors
n = {x eR?: 30 €0,1] st. x € vi(0) @ IB%O’pi(é)}
where v;(0) = x; and ~;(1) = xj41
30 15
10
5
0 0
5
-10
-30
E 0 10 0 10
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Example for obstacle avoidance using the obtained
path and MPC

15

10 -

—10 -

—15

—-14-12-10-8 -6 -4 =2 0 2 4 6 8 10 12 14
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Towards improved navigation corridors
Corridors enlargement problem

1. In order to compare the corridors one needs a performance index

e Average width of the corridors associated to the partition

2. Using this criterion, the enlargement of the cells within the partition can be

sought

o Idea:

different obstacles displacement lead to different partitions

Force the LP problem at the basis of convex lifting to return a different partition
The virtual reorganization of obstacles has to ensure the feasibility of the
corridors with respect to the original arrangement

Repeat the computation of the new partition as long as it is possible to
rearrange the obstacles

The existence of different partitions is ensured by the next result
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Towards improved navigation corridors
Corridors enlargement problem

1. In order to compare the corridors one needs a performance index

e Average width of the corridors associated to the partition

2. Using this criterion, the enlargement of the cells within the partition can be
sought
o ldea: different obstacles displacement lead to different partitions

@ Force the LP problem at the basis of convex lifting to return a different partition

@ The virtual reorganization of obstacles has to ensure the feasibility of the
corridors with respect to the original arrangement

@ Repeat the computation of the new partition as long as it is possible to
rearrange the obstacles

@ The existence of different partitions is ensured by the next result

Monotonic improvement

Consider a sequence of collections of obstacles P¥ inducing corridors that are
feasible with respect to P° = PV k > 0, and such that P+ 5 Pk, Suppose that
P51 “touches” Xf. As long as PX is convex liftable, then the width of the
corridors monotonically increases.
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PAYTITEIUERT NCETL W EL I3  Towards improved navigation corridors

Virtual obstacles: scaling based on Farkas’ Lemma

ldea: enlarge as much as possible the obstacles
@ Problem formulation: consider Q C H, where
Q={xeR?: Ax < by}, A, € R?* b, € RY,
H={xeR?: Ax < by}, Ay e R™ b, c R
Find the maximum scaling factor Ay and the center of
scaling ¢, such that the enlarged Q* C H, where

Q= {x €R": Agx < Aby + (1 — M) Ascq},

@ Based on the Extended Farkas' Lemma, Ay and ¢4 are
computed as solution of

min 1
cqsi1,02,U

st. UAg = u1An, Ubg — Apcy < 12, bpAqcq < by
pr—p2 =1, p1 21, up >0
Uj>0i=1,...,hj=1,.,q.

Then Ay =14+1/p
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Applications in path planning

Numerical results

corridors mean width

Towards improved navigation corridors
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Conclusions and perspectives

@ In a general perspective
e Convex lifting pertain to the class of lift and project methods
e They allow to tackle in a convex optimization framework design problem that
are notoriously complex

@ Main results:
e Provided a constructive inverse optimality result for any PWA control law
o Allow a region-free MPC implementation
e Open the way to robustification of PWA control (see PWA fragility)
e Provided a path planning tool for cluttered environments
@ Open problems:
e Inverse optimal MPC control with minimal prediction horizon based on a
nominal model
e Commensurate the fragility of PWA controllers
e Properly define and construct the optimal corridor with respect to width and
constrained navigation margins.
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