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Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics
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Multi-agent systems – Finite dimensional setting

Multi-agents dynamics can be described by systems of ODEs

ẋi(t) = vi(t,x(t), xi(t))

for i ∈ {1, . . . , N}, where
⋄ x = (x1, ..., xN ) ∈ (Rd)N encodes the states of the agents,

⋄ vi : [0, T ]× (Rd)N × Rd → Rd are non-local velocity fields.

Breadcrumb trail example (Time-dependent cooperative dynamics)

vi(t,x, xi) =
1

N

N∑
j=1

aij(t)ψ(xi − xj).

Central observation (pattern formation)

Simple microscopic interactions⇝ rich macroscopic structures.
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Multi-agent systems – Formation of global patterns

Example (Classical patterns arising in multi-agent systems)

⋄ Consensus (everybody goes at the same place)

⋄ Flocking (everybody goes in the same direction)

⋄ Synchronisation (periodic motions arise in the system)

Macroscopic approximations (Main motivations)

⋄ Interested in global patterns that involve many agents.

⋄ Usually N is very large ⇝ scale-stability of consensus ?

Today: Consensus for micro and macro cooperative systems.
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Multi-agent systems – General cooperative dynamics

We consider the cooperative dynamics

ẋi(t) =
1

N

N∑
j=1

aij(t)ϕ(|xi(t)− xj(t)|)(xj(t)− xi(t)), (CS)

where

⋄ ϕ ∈ Lip(R+,R∗
+) encodes distance-based interactions,

⋄ aij(·) ∈ L∞(R+, [0, 1]) represent communication links.

Definition (Asymptotic consensus formation)

A solution x(·) of (CS) converges to consensus if

lim
t→+∞

|xi(t)− x∞| = 0,

for all i ∈ {1, . . . , N} and some x∞ ∈ Rd.

Question: Stability/dependence of consensus for N → +∞ ?

↪→ Embed (CS) and analyse consensus in a macroscopic model!
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Multi-agent systems – Reformulation with graphons (1)

First idea: Study consensus for mean-field dynamics

∂tµN (t) + divx

(
(Φ(t) ⋆ µN (t))µN (t)

)
= 0.

[Ha&Liu’09], [Carrillo,Fornasier,Rosado&Toscani’10, [Piccoli,Rossi&Trélat’15].
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0

System of ODEs on N agents (x1, ..., xN ) ∈ (Rd)N

Single PDE on the density of agents µN : Rd → R.

µN = 1
N

N∑
i=1
δxi
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Multi-agent systems – Reformulation with graphons (2)

Problem: Mean-field needs indistinguishability, i.e. aij(t) = 1.

↪→ µN = 1
N

∑N
i=1δxi is spatial and “forgets” who is who.

Definition (Graph limit)[LS’07,M’14]

Given a solution x(·) of (CS), define the piecewise constant maps

i ∈ I 7→ xN (t, i) :=

N∑
k=1

xk(t)1[k−1
N ,

k
N

)(i)
and

i, j ∈ I 7→ aN (t, i, j) :=

N∑
k,l=1

akl(t)1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j)
and denote by I := [0, 1] the (continuum of) indices.



8/26

Multi-agent systems – Reformulation with graphons (2)

Problem: Mean-field needs indistinguishability, i.e. aij(t) = 1.

↪→ µN = 1
N

∑N
i=1δxi is spatial and “forgets” who is who.

Definition (Graph limit)[LS’07,M’14]

Given a solution x(·) of (CS), define the piecewise constant maps

i ∈ I 7→ xN (t, i) :=

N∑
k=1

xk(t)1[k−1
N ,

k
N

)(i)
and

i, j ∈ I 7→ aN (t, i, j) :=

N∑
k,l=1

akl(t)1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j)
and denote by I := [0, 1] the (continuum of) indices.



8/26

Multi-agent systems – Reformulation with graphons (2)

Problem: Mean-field needs indistinguishability, i.e. aij(t) = 1.

↪→ µN = 1
N

∑N
i=1δxi is spatial and “forgets” who is who.

Definition (Graph limit)[LS’07,M’14]

Given a solution x(·) of (CS), define the piecewise constant maps

i ∈ I 7→ xN (t, i) :=

N∑
k=1

xk(t)1[k−1
N ,

k
N

)(i)
and

i, j ∈ I 7→ aN (t, i, j) :=

N∑
k,l=1

akl(t)1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j)
and denote by I := [0, 1] the (continuum of) indices.



8/26

Multi-agent systems – Reformulation with graphons (2)

Problem: Mean-field needs indistinguishability, i.e. aij(t) = 1.

↪→ µN = 1
N

∑N
i=1δxi is spatial and “forgets” who is who.

Definition (Graph limit)[LS’07,M’14]

Given a solution x(·) of (CS), define the piecewise constant maps

i ∈ I 7→ xN (t, i) :=

N∑
k=1

xk(t)1[k−1
N ,

k
N

)(i)
and

i, j ∈ I 7→ aN (t, i, j) :=

N∑
k,l=1

akl(t)1[k−1
N ,

k
N

)(i)1[ l−1
N ,

l
N

)(j)
and denote by I := [0, 1] the (continuum of) indices.



9/26

Multi-agent systems – Reformulation as graphons (3)

I

Rd

x1
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xN

0 1
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. . . . . . 1

Graphon reformulation of (CS) ⇝ infinite-dimensional ODEs

∂tx(t, i) =

∫
I
a(t, i, j)ϕ(|x(t, i)−x(t, j)|)(x(t, j)−x(t, i))dj (GD)

for L 1-a.e. i ∈ I ⇝ Adapt consensus methods to graphons!
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Consensus analysis – Reformulation and main ideas
Definition (Adjacency and graph-Laplacian matrices)

Given an adjacency matrix AN := (aij)
N
i,j=1 ∈ [0, 1]N×N satisfying

aii = 1, we define its graph-Laplacian by

LN : x ∈ (Rd)N 7→
(

1
N

∑N
j=1aij(xi − xj)

)
1≤i≤N

∈ (Rd)N .

↪→ Reformulation of (CS) as ẋ(t) = −LN (t)x(t) when ϕ ≡ 1.

Idea: Quantitative convergence results ⇝ Lyapunov methods!

Definition (Candidate energy functionals)

We define the variance functional

V(x) := 1

2N2

N∑
i,j=1

|xi − xj |2 (ℓ2-convergence),

and the diameter

D(x) := max
i, j∈{1,...,N}

|xi − xj | (ℓ∞-convergence).
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Consensus – Scrambling coefficient and diameter estimates
Definition (Scrambling coefficient)[Seneta’79]

The scrambling of a graph AN = (aij)
N
i,j=1 is defined by

η(AN ) := min
1≤i,j≤N

1

N

( N∑
k=1,k ̸=i,j

min
{
aik, ajk

}
+ aij + aji

)
↪→ Positive if each (i, j) either interact, or follow the same k.
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Theorem (Quantitative diameter decay)[Motsch&Tadmor’14]

For each x0 ∈ (Rd)N , it holds that

D(x(t)) ≤ D(x0) exp

(
−
∫ t

0
η(AN (s))ds

)
.
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{
aik, ajk

}
+ aij + aji

)
↪→ Positive if each (i, j) either interact, or follow the same k.
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Theorem (Quantitative diameter decay)[Motsch&Tadmor’14]

For each x0 ∈ (Rd)N , it holds that

D(x(t)) ≤ D(x0) exp

(
−
∫ t

0
η(AN (s))ds

)
.
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Consensus – Fiedler number and variance estimates
Definition (Algebraic connectivity of a graph)[Fiedler’73, Mohar’91]

The Fiedler number of a symmetric graph AN = (aij)
N
i=1 is

λ2(AN ) = inf
x∈C⊥

N

⟨LN x,x⟩N
|x|2N

,

where ⟨x,y⟩N := 1
N

N∑
i=1

⟨xi, yi⟩ and

CN :=
{
x ∈ (Rd)N s.t. x1 = · · · = xN

}
is the consensus manifold. ⇝ Kind of Courant-Fisher theorem.

Theorem (Quantitative variance decay)[Motsch&Tadmor’14]

Suppose that AN (t) = (aij(t))
N
i,j=1 is symmetric for a.e. t ∈ R+.

Then for each x0 ∈ (Rd)N , it holds that

V(x(t)) ≤ V(x0) exp

(
−
∫ t

0
λ2(AN (s))ds

)
.
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Consensus – Idea of the proof in the symmetric case

d
dtV(x(t)) =

1
N

N∑
i=1

〈
ẋi(t), xi(t)− x̄

〉

= 1
N

N∑
i=1

〈(
LN (t)(x(t)− x̄)

)
i
, (xi(t)− x̄)

〉⇓ LN (t)x̄ = 0

= −
〈
LN (t)(x(t)− x̄), (x(t)− x̄)

〉
N

⇓ Def. of ⟨·, ·⟩N

≤ −λ2(AN (t))|x(t)− x̄|2N

⇓ Def. of λ2(AN (t))

= −λ2(AN (t))V(x(t))

⇓ Def. of V(x(t))

↪→ Grönwall lemma and we’re done!
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ẋi(t), xi(t)− x̄

〉

= 1
N

N∑
i=1

〈(
LN (t)(x(t)− x̄)

)
i
, (xi(t)− x̄)

〉⇓ LN (t)x̄ = 0

= −
〈
LN (t)(x(t)− x̄), (x(t)− x̄)

〉
N

⇓ Def. of ⟨·, ·⟩N

≤ −λ2(AN (t))|x(t)− x̄|2N

⇓ Def. of λ2(AN (t))

= −λ2(AN (t))V(x(t))

⇓ Def. of V(x(t))

↪→ Grönwall lemma and we’re done!



14/26

Consensus – Idea of the proof in the symmetric case

d
dtV(x(t)) =

1
N

N∑
i=1

〈
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Consensus – About algebraic and graph connectivity (1)

Theorem (Characterisation of graph connectivity)[Mohar’91]

A symmetric graph AN = (aij)
N
i,j=1 is strongly connected, i.e.

for all i, j there exists i = k1, . . . , km = j s.t. aklkl+1
> 0

if and only if λ2(AN ) > 0.

Question: What happens when AN is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A graph AN is a disjoint union of str. connected components
(“DUSCC”) if and only if there exists (v1, . . . , vN ) ∈ (R∗

+)
N s.t.

L∗
Nv = 0 and 1

N

N∑
i=1
vi = 1

where v := (v1, . . . , v1, . . . , vN , . . . , vN ) ∈ (R∗
+)

dN .

Remark: L∗
N (1, . . . , 1) = 0 if AN is symmetric ⇝ always DUSCC!
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Consensus – About algebraic and graph connectivity (2)
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Definition (Generalised algebraic connectivity for graphs)[Wu’05]

The algebraic connectivity of a DUSCC graph AN is

λ2(AN ) := inf
x∈C⊥

N

⟨Lv
N x,x⟩N
|x|2N

where Lv
N := diag(v)LN is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates ?

Theorem (Characterisation of graph connectivity)[Wu’05]

A DUSCC graph AN is str. connected if and only if λ2(AN ) > 0.
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Outline of the talk

Multi-agent systems – From microscopic to macroscopic models

Review of consensus methods for microscopic cooperative systems

Consensus analysis in the context of graphon dynamics
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Graphon dynamics – Adjacency and graph-Laplacian

We consider the graphon dynamics

∂tx(t, i) =

∫
I
a(t, i, j)(x(t, j)− x(t, i))dj

where a(t) ∈ L∞(I × I, [0, 1]) represents the communications.

Definition (Adjacency and graph-Laplacian operators)

We define the adjacency operator A(t) : L2(I,Rd) → L2(I,Rd)

A(t) y : i ∈ I 7→
∫
I
a(t, i, j)y(j)dj,

as well as the graph-Laplacian L(t) : L2(I,Rd) → L2(I,Rd) by

L(t)y : i ∈ I 7→
∫
I
a(t, i, j)(y(i)− y(j))dj.

↪→ Semilinear reformulation of the dynamics ẋ(t) = −L(t)x(t).
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Graphon dynamics – Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS’22]

We define the diameter of a map x ∈ L∞(I,Rd)

D(x) := sup
i,j∈I

|x(i)− x(j)|

as well as the scrambling coefficient of a graphon A by

η(A) := inf
i,j∈I

∫
I
min{a(i, k), a(j, k)}dk.

Theorem (Quantitative diameter decay)[BPDS’22]

For each x0 ∈ L∞(I,Rd), it holds that

D(x(t)) ≤ D(x0) exp

(
−
∫ t

0
η(A(s))ds

)
.

Two technical novelties

⋄ No stochastic normalisation trick ⇝ Geometric argument.

⋄ t 7→ D(x(t)) not diff. ⇝ approx. with Scorza-Dragoni.
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Graphon dynamics – Strong connectivity for graphons
Definition (Graphon connectivity)[Boudin,Salvarini&Trélat’21]

A graphon A is strongly connected if the following holds.

(i) (Connectivity) For L 1-almost every i, j ∈ I, there exists
i = k1, . . . , km = j such that kl+1 ∈ supp(a(kl, ·)).

(ii) (Degree lower-bound) infi∈I
∫
I a(i, j)dj ≥ δ > 0.

Theorem (Canonical kernel of L∗)[Boudin,Salvarini&Trélat’21]

If A is strongly connected, there exists a unique v ∈ L2(I,R∗
+) s.t.

L∗v = 0 and
∫
I v(i)di = 1.



20/26

Graphon dynamics – Strong connectivity for graphons
Definition (Graphon connectivity)[Boudin,Salvarini&Trélat’21]
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If A is strongly connected, there exists a unique v ∈ L2(I,R∗
+) s.t.

L∗v = 0 and
∫
I v(i)di = 1.



21/26

Graphon dynamics – Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)

We define the algebraic connectivity of a DCUSCC graphon A by

λ2(A) := inf
x∈C⊥

⟨Lv x, x⟩L2(I)

∥x∥2
L2(I)

where

⋄ C :=
{
x ∈ L2(I,Rd) constant

}
is the consensus manifold,

⋄ Lv := Mv L the renormalised graph-Laplacian.

Theorem (On algebraic and graphon connectivity)[BPDS’22]

For a graphon A, the following connectivity characterisations hold.

⋄ If A is symmetric, strong connectedness ⇐⇒ λ2(A) > 0.

⋄ If A is DCUSCC, strong connectedness ⇐⇒ λ2(A) > 0.

Open problem: Is A DCUSCC when there exists v ∈ Ker(L∗) ?
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Graphon dynamics – Variance decay and connectivity (1)
Theorem (Variance decay for symmetric graphons)[BPDS’22,BF’21]

Suppose that A(t) is symmetric for a.e. t ∈ R+. Then for each
x0 ∈ L∞(I,Rd) and every τ > 0, there exist ατ , γτ > 0 s.t.

V(x(t)) ≤ ατV(x0) exp
(
− γτ

∫ t

0
λ2

(
1
τ

∫ s+τ
s A(σ)dσ

)
ds

)
.

V(x) := 1
2

∫
I |x(i)− x̄|2di

s s+ τ
3 s+ 2τ

3
s+ τ

1 2

34

1

1 2

34
1

1 2

34

1
1

1 2

34

1
τ

1
τ

1
τ

1
τ

λ2

(
1
τ

∫ s+τ

s
A(σ)dσ

)
> 0

Time averaging

Idea: Exponential consensus with mere average connectivity.
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Graphon dynamics – Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L∗1 = 0, namely∫
I
a(i, j)dj =

∫
I
a(j, i)dj.

↪→ Equality between the in-degree and out-degree at a.e. node.

Theorem (Variance decay for balanced graphons)[BPDS’22]

Suppose that A(t) is balanced for L 1-almost every t ∈ [0, T ]. Then
for each x0 ∈ L∞(I,Rd), it holds that

V(x(t)) ≤ V(x0) exp
(
−
∫ t

0
λ2(A(s))ds

)
.

Open problem: Average condition like in the symmetric case ?
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Graphon dynamics – Variance decay and connectivity (3)

Issue: If A(t) is DCUSCC ⇝ V(·) not Lyapunov anymore!

Definition (Weighted variance)

If a graphon A is DCUSCC, we define the weighted variance by

Vv(x) :=
1

2

∫
I
|x(i)− ⟨v, x⟩L2(I)|2di.

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS’22]

Suppose that A(t) is DCUSCC for L 1-a.e. t ∈ R+ with

ν ≤ v(t, i) ≤ 1
ν for L 1-a.e. i ∈ I.

Moreover, suppose that t 7→ A(t) is piecewise constant with dwell-
time τd > 0. Then for each x0 ∈ L∞(I,Rd), it holds that

V(x(t)) ≤ 1

ν2
V(x0) exp

(
− ν2

∫ t

0
λ2(A(s))ds− 2

τd
log

(
1
ν

)
t

)
.

Open problem: Can we derive an estimate without dwell-times ?
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Graphon dynamics – Link between L2- and L∞-consensus

Observation: Under the sufficient condition for L2-consensus

λ2

(
1

τ

∫ t+τ

t
A(s)ds

)
≥ µ or

1

τ

∫ t+τ

t
λ2(A(s))ds ≥ µ

we numerically observed L∞-consensus ⇝ Is this true in general ?

Theorem (Equivalence between L2- and L∞-consensus)[BPDS’22]

Suppose that there exist constants (τ, µ) ∈ R∗
+ × (0, 1] s.t.

1

τ

∫ t+τ

t

∫
I
a(s, i, j)djds ≥ µ

for L 1-almost every i ∈ I. Then

∥x(t)− x∞∥L2(I) −→
t→+∞

0

for some x∞ ∈ Rd if and only if

∥x(t)− x∞∥L∞(I) −→
t→+∞

0.
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Conclusion – That’s all friends!

1) Convergence to consensus in micro and macro dynamics.

2) Generalisation of the scrambling and Fiedler numbers.

3) Still some interesting open problems to investigate!

Thank you for your attention !
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