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Multi-agent systems — Finite dimensional setting

Multi-agents dynamics can be described by systems of ODEs
2i(t) = vilt, z(t), 7:(t))

forie {1,...,N}, where

o x=(r1,..,2n7) € (RN encodes the states of the agents,

o v [0,T] x (RHN x RY — R? are non-local velocity fields.

Breadcrumb trail example (Time-dependent cooperative dynamics)
1 N
vty 1) = = > a )z — xy).
Nj=1

Central observation (pattern formation)
Simple microscopic interactions ~ rich macroscopic structures.
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Multi-agent systems — Formation of global patterns
Example (Classical patterns arising in multi-agent systems)
< Consensus (everybody goes at the same place)

< Flocking (everybody goes in the same direction)

o Synchronisation (periodic motions arise in the system)

Macroscopic approximations (Main motivations)
o Interested in global patterns that involve many agents.

< Usually N is very large ~~ scale-stability of consensus ?

Today: Consensus for micro and macro cooperative systems.
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Multi-agent systems — General cooperative dynamics

We consider the cooperative dynamics

1
:Nz::”u B = (O () = wi®), (CS)

where
o ¢ € Lip(Ry,R% ) encodes distance-based interactions,

o a;;(-) € L*(R4, [0, 1]) represent communication links.

Definition (Asymptotic consensus formation)
A solution x(-) of (CS) converges to consensus if

. AT
tliinoolxl(t) €z 0,

foralli € {1,..., N} and some 2> € R

Question: Stability /dependence of consensus for N — +oo ?
< Embed (CS) and analyse consensus in a macroscopic model!
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First idea: Study consensus for mean-field dynamics

Bypin (t) + div, ((d)(t) NG) ;LN(t)> = 0.
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System of ODEs on N agents (i1, ...,2v) € (RHN
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Single PDE on the density of agents /1y : R — R.
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Problem: Mean-field needs indistinguishability, i.e. «;;(t) = 1.
N = %Z{Lémi is spatial and “forgets” who is who.

Definition (Graph limit)[LS'07,M'14]
Given a solution x(-) of (CS), define the piecewise constant maps

i€l xy(ti): Zl‘k kl

and
N
i,j eI an(tyi,j):= Z ar(t) ]l[

and denote by I := [0, 1] the (continuum of) indices.
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Graphon reformulation of (CS) ~~ infinite-dimensional ODEs

Oy (,4) =/Ia(t,i,j)¢(lx(t,i)—x(t,j)l)(x(t,j)—m(t,i))dj (GD)

for #1-ae. i € I ~ Adapt consensus methods to graphons!
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Definition (Adjacency and graph-Laplacian matrices)
Given an adjacency matrix A, = (a,;j)f-yj:l € [0, 1]V*N satisfying
a;; = 1, we define its graph-Laplacian by
Ly:xe (Rd)N — (%Z;\[zl(u]’(l‘i — Jl)j))lgiSN S (Rd)N.
— Reformulation of (CS) as @(t) = —Ln(t)xz(t) when ¢ = 1.

Idea: Quantitative convergence results -~ Lyapunov methods!

Definition (Candidate energy functionals)
We define the variance functional

N
1
V(x) = IN? Z |z — ;]2 (¢2-convergence),
3,j=1

and the diameter

D(x):= i,jer?l?)f,N} |z — 2] (£oo-convergence).




Consensus — Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]
The scrambling of a graph A, = (ai.j)%zl is defined by
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1<ij<N N .
k=1,k#1,j
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Consensus — Scrambling coefficient and diameter estimates

Definition (Scrambling coefficient)[Seneta'79]
The scrambling of a graph A, = (aij),f?;:l is defined by

N
U(A;\') = mi 1 ( Z min {(Iika (I,jk} + ai; + (Ij,‘)

in —
1SSV N T
— Positive if each (i, j) either interact, or follow the same k.
\®/ N~ \®/
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Theorem (Quantitative diameter decay)[MotscheTadmor'14]
For each 20 € (RN, it holds that

DGe(t) < Do - [ tn(AA\(s))ds)-
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Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]
The Fiedler number of a symmetric graph A, = (a,;j)ij\;l is

<LN$, w>N

)\Q(AN) =
=%

)

N
where (z,y) N := %'Zl<xiayi>
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Consensus — Fiedler number and variance estimates

Definition (Algebraic connectivity of a graph)[Fiedler'73, Mohar'91]
The Fiedler number of a symmetric graph A, = ((z,jj)f\il is

L
Mo(Ay) = imf VDOV
me‘gﬁ,‘ |w|N
LN
where (x,y)N 1= & > (24, 1) and
i=1
Cn = {m e RNV st.oop == xzv}

is the consensus manifold. ~ Kind of Courant-Fisher theorem.

Theorem (Quantitative variance decay)[MotscheTadmor'14]
Suppose that A (t) = ((I,ij(t))gjzl is symmetric for a.e. t € R,.
Then for each 20 € (R%)Y, it holds that

vwa»svw%wp(—AUAAﬂ@mﬁ.
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= ~(Ln(t)(x(t) — 2), (z(t) — 7))\
U Def. of A\y(An(1))
< (A (t)|z(t) — 2[5
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= —(Ln(t)(x(t) — 2), (2(t) — 2))
J Def. of Xa(An(2))
< Xa(Av @) (t) - 2
|} Def. of V(x(t))
= =X (An (1) V(x(t))
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= —(Ln(t)(z(t) — 2), (x(t) — 7))y
I} Def. of Xa(An(t))
< =Xe(Av@))lz(t) -z}
J Def. of V(z(t))
= =X (An()V(x(t))

< Gronwall lemma and we're done!
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Theorem (Characterisation of graph connectivity)[Mohar'91]
%:1 is strongly connected, i.e.
forall i,j there exists ¢ =ky,...,kp =7 st. apy,., >0

if and only if \y(A ) > 0.

A symmetric graph Ay = (a,;)

Question: What happens when A is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu'05]

A graph A, is a disjoint union of str. connected components
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N
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Theorem (Characterisation of graph connectivity)[Mohar'91]
%:1 is strongly connected, i.e.
forall i,j there exists ¢ =ky,...,kp =7 st. apy,., >0

if and only if \y(A ) > 0.

A symmetric graph Ay = (a,;)

Question: What happens when A is not symmetric ?

Theorem (Characterisation of graph connectivity)[Wu'05]
A graph A, is a disjoint union of str. connected components
(“DUSCC") if and only if there exists (vy,...,vn) € (R} s.t.

N
Lyv=0 and %Zmzl
i=1
where v := (vi,...,v1,...,0N,...,on) € (RY)N.

Remark: Ly (1,...,1) =0if Ay is symmetric -~ always DUSCC!
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060 GQG ?@(?

OO OO ® ©®



Consensus — About algebraic and graph connectivity (2)

o Qe
OO @ @@\/i

Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Mo(A) = inf ENTEN
TECK |;1;|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.
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Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Ao(Ay) = inf <N$—2$>N
TECK |;[;|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates 7

J
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Definition (Generalised algebraic connectivity for graphs)[wu'05]
The algebraic connectivity of a DUSCC graph A is

L'U
Ao(Ay) = inf <N$—2$>N
TECK |;13|N

where LY := diag(v)Ly is the renormalised graph-Laplacian.

Question: Link with graph connectivity and variance estimates 7

Theorem (Characterisation of graph connectivity)[Wu'05]
A DUSCC graph A is str. connected if and only if A\a(A ) > O.J
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Graphon dynamics — Adjacency and graph-Laplacian

We consider the graphon dynamics

Byt i) = / At §) (et 5) — 2(8,)d]

I
where a(t) € L*°(I x I,]0,1]) represents the communications.
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Graphon dynamics — Adjacency and graph-Laplacian

We consider the graphon dynamics
01 (t,9) = [ 0(t,is)(o(6.5) — o(6,0))d
I
where a(t) € L>(I x 1,0, 1]) represents the communications.

Definition (Adjacency and graph-Laplacian operators)
We define the adjacency operator A(t) : L2(I,R%) — L2(I,R%)

AWyiiers [otipui,
I
as well as the graph-Laplacian L(t) : L?(I,R%) — L?(I,R%) by
Lty i€ T [ alti ) = v

< Semilinear reformulation of the dynamics i:(t) = —ILL(t)x(¢).




Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the diameter of a map = € L®°(I,R%)

D(2) i= sup [2(i) — 2(j)|
i,jel




Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the diameter of a map = € L®°(I,R%)
D(x) := sup |x(i) — x(j)|
ijel

as well as the scrambling coefficient of a graphon A by

n(A) = inf /mln{u ivk),a(y,k)}dk.

u,J€l
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Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the diameter of a map = € L®°(I,R%)
D(x) := sup |x(i) — x(j)|
ijel

as well as the scrambling coefficient of a graphon A by

n(A) = inf /mln{u ivk),a(y,k)}dk.

u,J€l

Theorem (Quantitative diameter decay)[BPDS'22]
For each 20 € L>°(I,R%), it holds that

D(:(0) < D - | tn(A(s))ds).




Graphon dynamics — Scrambling and diameter estimate
Definition (Scrambling coefficient and diameter)[BPDS'22]
We define the diameter of a map = € L®°(I,R%)
D(x) := sup |x(i) — x(j)|
ijel

as well as the scrambling coefficient of a graphon ./ by

n(A) = inf /mln{u ivk),a(y,k)}dk.

u,J€l

Theorem (Quantitative diameter decay)[BPDS'22]
For each 20 € L>°(I,R%), it holds that

D(:(0) < D - | tn(A(s))ds).

Two technical novelties
< No stochastic normalisation trick ~~ Geometric argument.

o t+ D(x(t)) not diff. ~ approx. with Scorza-Dragoni.
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Definition (Graphon connectivity)[Boudin,Salvarinie Trélat'21]
A graphon A is strongly connected if the following holds.
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Definition (Graphon connectivity)[Boudin,Salvarinie Trélat'21]
A graphon A is strongly connected if the following holds.
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is strongly connected if the following holds.
(i) (Connectivity) For .#!-almost every i, j € I, there exists
i=ki,...,km =j such that k;11 € supp(a(ky,-)).
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
(i) (Connectivity) For Z1-almost every i, j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) infier [; a(i,5)dj > 6 > 0.
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
(i) (Connectivity) For Z1-almost every i, j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) infier [; a(i,5)dj > 6 > 0.

\I

Theorem (Canonical kernel of IL*)[Boudin,Salvarini« Trélat'21]

If A is strongly connected, there exists a unique v € L*(I,R%) s.t

L*s=0  and Jrv(i)di = 1.
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Definition (Graphon connectivity)[Boudin,Salvarinis Trélat'21]
A graphon A is if the following holds.
(i) (Connectivity) For Z1-almost every i, j € I, there exists
i =ki,...,km = j such that k1 € supp(a(ky,-)).

(i) (Degree lower-bound) infier [; a(i,5)dj > 6 > 0.

\I

Theorem (Canonical kernel of IL*)[Boudin,Salvarini« Trélat'21]

If A is strongly connected, there exists a unique v € L*(I,R%) s.t

L*s=0  and Jrv(i)di = 1.
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Definition (Generalised algebraic connectivity)
We define the algebraic connectivity of a DCUSCC graphon A by

<]L’v xT, SU>L2(I)
r€Et ||l’||%2(1)
where
o € :={x € L*(I1,R?Y) constant} is the consensus manifold,

o L, := M, L the renormalised graph-Laplacian.
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Graphon dynamics — Algebraic and graphon connectivity

Definition (Generalised algebraic connectivity)
We define the algebraic connectivity of a DCUSCC graphon A by

<]Lv xT, I‘>L2(1)
& el
where
o € :={x € L*(I1,R?Y) constant} is the consensus manifold,

o L, := M, L the renormalised graph-Laplacian.

Theorem (On algebraic and graphon connectivity)[BPDS'22]
For a graphon A, the following connectivity characterisations hold.

o If A is symmetric, strong connectedness < A\y(A) > 0.
o If A is DCUSCC, strong connectedness < A\y(.4) > 0.

Open problem: Is A DCUSCC when there exists v € Ker(L*) 7
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Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢ € R;. Then for each
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Graphon dynamics — Variance decay and connectivity (1)
Theorem (Variance decay for symmetric graphons)[BPDS'22,BF'21]
Suppose that A(t) is symmetric for a.e. ¢ € R;. Then for each
20 € L°(I,RY) and every 7 > 0, there exist a;,7, > 0 s.t.

V(b)) < arV(2°) exp ( — /0 t Ag(; [t A(a)da) ds).
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Time averaging
©

Vi) =4ty - T
e

Idea: Exponential consensus with mere average connectivity.




Graphon dynamics — Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L*1 = 0, namely

/I ali, j)dj = /I a(j,i)dj.

— Equality between the in-degree and out-degree at a.e. node.
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Graphon dynamics — Variance decay and connectivity (2)

Definition (Balanced interaction topology)

A graphon A is said to be balanced if L*1 = 0, namely

/I ali, j)dj = /I a(j,i)dj.

— Equality between the in-degree and out-degree at a.e. node.

Theorem (Variance decay for balanced graphons)[BPDS22]

Suppose that /A (t) is balanced for .#!-almost every t € [0,7]. Then
for each 20 € L>(I,R?), it holds that

V) <veen (- [ t alcA(s)ds ).

Open problem: Average condition like in the symmetric case ?
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Issue: If A(t) is DCUSCC -~ V(-) not Lyapunov anymore!

Definition (Weighted variance)
If a graphon A is DCUSCC, we define the weighted variance by
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Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS'22]
Suppose that /A(t) is DCUSCC for #!-a.e. t € Ry with

v<oti) <L for PLlae icl

Moreover, suppose that t — A(t) is piecewise constant with dwell-
time 7; > 0. Then for each 2% € L>(I,RY), it holds that

V(a(t) < %V(w”) exp ( — v /t Xa(A(s))ds — 2 log (%)t)-
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Graphon dynamics — Variance decay and connectivity (3)

Issue: If A(t) is DCUSCC -~ V(-) not Lyapunov anymore!

Definition (Weighted variance)
If a graphon A is DCUSCC, we define the weighted variance by

/| ’UTL2(1|dZ

Theorem (Variance decay for DCUSCC dwelling graphons)[BPDS'22]
Suppose that /A(t) is DCUSCC for #!-a.e. t € Ry with

v<oti) <L for PLlae icl

Moreover, suppose that t — A(t) is piecewise constant with dwell-
time 7; > 0. Then for each 2% € L>(I,RY), it holds that

V(u(t) < %V(w”) exp ( — v /t Aa(A(s))ds — 2 log (%)t)-

0

Open problem: Can we derive an estimate without dwell-times 7



Graphon dynamics — Link between L?- and L>°-consensus

Observation: Under the sufficient condition for L2-consensus

1 t+71 1 47
/\2(— A(s)ds) >u oor L / Na(A(s))ds > p
t

T Jt T

we numerically observed L°°-consensus ~ Is this true in general ?




Graphon dynamics — Link between L?- and L*>°-consensus

Observation: Under the sufficient condition for L2-consensus

AQ(l t+TA(s)ds) >u oo /t T e (A(s)ds > g

T Jt T
we numerically observed L°°-consensus ~ Is this true in general ?

Theorem (Equivalence between L2- and L°°-consensus)[BPDS'22]
Suppose that there exist constants (7, ) € R x (0,1] s.t.

1 t+1
—/ /u(s,i,j)djds >
T Jt I

for Z'-almost every i € I. Then

le(®) = M2y 52 0

for some 2> € R? if and only if

|| () —:L’OOHLOOU) t—:)oo 0.
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Conclusion — That's all friends!

1) Convergence to consensus in micro and dynamics.
2) Generalisation of the and Fiedler numbers.

3) Still some interesting open problems to investigate!

Thank you for your attention !
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