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Objective

The objective is to solve the following problem:

N
L 1
minimize f (Nzlg,(x,)> .

This is a multi-agent problem, where the choices (xi,...,xy) are
1 N
only seen through the aggregate term > .=, gi(xi).
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@ N power plants.

@ x;: decision variable associated to agent i € {1, ..., N}
— production gj(x;).

e f penalizes the difference with a demand.
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Setting

o & Hilbert space, with its inner product (-, )¢ and its deriving
norm || - ||¢. Sometimes refered to as aggregate space.

@ Function f: £ — R.

@ Positive integer N.



Framework
0@0000000

Setting

& Hilbert space, with its inner product (-, - )s and its deriving
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Setting

& Hilbert space, with its inner product (-, - )s and its deriving
norm || - ||¢. Sometimes refered to as aggregate space.

Function f: £ — R.

Positive integer N.

Forie {1, ...,N}, set X; and function g;: X; — &.
Product set X == [, &;, with its elements denoted
x=(X1,...,Xn)-

The problem

1N
mirlierr;(ize f (Niz_;gi(xi)> . (P)
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Assumptions

o Forallie{l,...,N}, the set gi(X;) is compact.

@ The function f is convex, and is 3-strongly smooth (which can
be shown to be equivalent to f having [3-Lipschitz gradient).




Framework
[e]e] lelele]ele]e)

Assumptions

o Forallie{l,...,N}, the set gi(X;) is compact.

@ The function f is convex, and is [3-strongly smooth (which can
be shown to be equivalent to f having [3-Lipschitz gradient).
v

No assumptions on the sets X; and the functions g; per se, in
particular in terms of structure or regularity.

Under these assumptions, Problem (P) has a solution.

.
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Geometric formulation, relaxation

Geometric formulation:

1 N
y/ gl( /) and y_*zyl

Yi€Yi
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Geometric formulation, relaxation

Geometric formulation:

N
1
Vi=gi(X) and Y= Nzyi

P) <— fly) «— f i
(P) mlr;)g}lze (v) mlclgnl‘ze Zy)

Convex relaxation:
N
fl= ' P
minimize (/\/; [a]> (P)

where, for all &' € M(Y)), E[a'] = [ yida'(yi).

i

S—
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Advantages of the relaxation

Relaxation gap: quantity Val(P) — Val(P) > 0. May be positive.

In [Bonnans et al. '22]
e Estimate of the relaxation gap (tends to 0 when N — +00).

@ Method to recover an approximate solution of Problem (P)
from an approximate solution of Problem (P) (efficient when
N large).
We want N large
+ focus on the resolution of Problem (P), with dual-based
methods.
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Lagragian function

J = ﬂy,-, M(F) = ﬂM(y,-), B(F) = f[p(y,-)

i—1
There is a bounded linear operator K: £ — H,.Nzlc(y,-) such that

1L,
NZE[a’] =—-K*a.
i=1
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Lagragian function

J = f[y,-, M(F) = ﬂM(y,-), B(F) = f[p(y,-)

i—1
There is a bounded linear operator K: £ — H,.Nzlc(y,-) such that

1L,
NZE[a’] =—-K*a.
i=1
Lagrangian function [ /\;l(j)) x &= R.

[(a ) = (1) + (u, —K*a)e + Lﬁ(j;)(a) if u € dom(f*).
7u - otherwise.

where f*: £ — R is the Fenchel transform of £, defined as

f(u) = sup (A e = £(N).
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Dual problem: Saddle-point

We have

(P) «— minimize sup L(a, ).
aeM(Y) uee

Dual Problem:

maximize inf [(a, ) (D)
HEE acM(Y)
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General Lemma

We have
@ Problems (P) and (P) have same dual (D).

© There is no duality gap between Problems (P) and (D), i.e.
Problems (P) and (D) have same value V. Moreover,
Problem (D) has a solution p*.

Q@ Problem (P) has a solution.
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Other formulation of duality

Dual function Q: £ = R

N

Qu) = —F*(u) + % > (

=

inf
Yi€Y

i

<,U>YI>5>

(D) «— maﬁiengize Q(w)

Q is strongly concave (since * is strongly convex)
+ decomposed along the sets ;.
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Approach

In [Wang '17], the following general approach is investigated:
e Find an approximate solution of Problem (D).

o Reconstruct an approximate solution for Problem (P) from it.
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Approach

In [Wang '17], the following general approach is investigated:
e Find an approximate solution of Problem (D).

o Reconstruct an approximate solution for Problem (P) from it.

The first method we propose is as follows:

@ Same Cutting-plane algorithm as in [Wang '17] to solve
Problem (D).

@ Primal reconstruction different from [Wang '17], easier to
implement in our opinion.
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General algorithm

Algorithm Cutting-Plane Algorithm

Require: ;0 € £.
for t=0,1,... do
At [teration t, we have uf € £ and (ak)ke{o,...,t—l} cP(Y)".
Step 1: Find at € argmin L(a, ut).
acP(Y)
Step 2: Set the approximated dual function

‘= min [ak,~ = min [a,- .
Qe ke{o,...,t} ( ) acconv{ak ke{0,...,t}} ( )

Step 3: Find a dual candidate ;%! € argmax Q1 1(p).
pneé
Step 4: Find 37! a primal candidate.

end for
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Interpretation

Definition

We call cut a function of the form € & — L(3, 1), for a given 3.
We say that it is exact at p if L(3, 1) = Q(n) inf_ L(a, p).

:aE()




Cutting-plane algorithm
[e]e]e] Je]ele]

Interpretation

Definition

We call cut a function of the form € & — L(3, 1), for a given 3.
We say that it is exact at p if L(3, 1) = Q(n) inf_ L(a, p).
)

ac

@ Step 1: find an exact cut at pu'.
Best-response procedure (we can take a' as a N-tuple of Dirac
measures).

@ Step 2: update the approximation of Q.

@ Step 4, in [Wang '17]: almost-projection algorithm.
We follow a different idea. Results from the study of Step 3.
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Convergence results

There exists C such that the following assertions hold:

@ We have the following dual convergence speeds:

* ~

. C
V-Q(a) <~ and |[ju*—pflle <

t
where it € argmax Q(uk).

ke{o, ...t}
@ We have the following primal convergence speed:

f(-K*5) -V <

Slo

<
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Convergence results

There exists C such that the following assertions hold:
@ We have the following dual convergence speeds:

v-q@a)<S

= d Y
= and " — s <

%\

where it € argmax Q(uk).

ke{o, ...t}
@ We have the following primal convergence speed:
C
f(—K*3") - Vv < —.
(ks -V <

Improves [Wang '17] (no assumption of strong convexity of f).
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Primal algorithm

Formulate the previous algorithm only in terms of at and 3t+1.

Algorithm Equivalent Fully-Corrective Frank-Wolfe algorithm
Require: 3% € 75(37)
for t=0,1,... do

Find a* € argmin (Vf (—K*3"), —K*a)¢.
2P()
W

Find 31 solution of

minimize f(—K*3)
3econvi{ak, ke{0,...,t}}

end for
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Better primal convergence result

Yields a better primal convergence speed.

There exists C such that for all t,
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@ Chambolle-Pock algorithm
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Context

We have

(D) <— minimize sup —L(a,p).
nee aE/\;l()N})

We use [Chambolle, Pock '16], Algorithm 4. It is the best-suited
algorithm from [Chambolle, Pock '16] for our problem.
@ Makes use of the strong convexity of *.

@ Allows for the use of a nonlinear proximity operator D,.
We use one deriving from the Kullback-Leibler divergence
(well-suited for P())).
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Context

We have

(D) <— minimize sup —L(a,p).
nee aE/\;l(j})

We use [Chambolle, Pock '16], Algorithm 4. It is the best-suited
algorithm from [Chambolle, Pock '16] for our problem.
@ Makes use of the strong convexity of *.

@ Allows for the use of a nonlinear proximity operator D,.
We use one deriving from the Kullback-Leibler divergence
(well-suited for P())).

@ The sets Y; are finite, of cardinal n;.

@ For all T > 0, we can compute

. 1
prox. ¢ = argmin f + —||u — -||3.
WEE 2T
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Accelerated primal-dual algorithm

Algorithm Accelerated primal-dual algorithm

Require: : Initial guesses y~! = 40 € € and &° € ri (P()),
sequences (6¢)cny s (Tt)ren s (0t) ren € (]Ri)N well-chosen.

for t € N do
a'™ =argmin — (ut + 0 (pt — pt1), K*a)s + J%Da(a, a').
acP(Y)
pttt = argmin (u, K*a)e + (1) + o 1 = |-
ne

end for
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Convergence result

For well-chosen sequences (0¢),cry » (T¢)ren » (0¢) en € (Ri)N,
there exists C, which depends on the data of the problem such

that, forall T > 1
- f(—K*AT) —V< —

o IMT — p¥|le <
with for all T € N*:

.
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Convergence result I

More specifically, the constant C depends on
o The initial guesses (1, a%).
@ The Lipschitz constant § of Vf.

@ The operator norm ||K|| = max max]y;lls.
P 1K1 ie{1,...,N}y,-ey,-Hy'H'S

@ The cardinals of the sets );, or more precisely {max }n,-.
ie{1,..,N
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Convergence result I

More specifically, the constant C depends on
o The initial guesses (1, a%).
@ The Lipschitz constant § of Vf.

@ The operator norm ||K|| = max max]|yi|le.
IX1 ie{1,...,/v}y,-ey,-Hy'H
@ The cardinals of the sets );, or more precisely {max }n,-.
ie{1,..,N

In particular, it depends directly on N only through the dependence
in N of the functions g; and of the sets X}, if there is one.
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We tested our algorithm on a problem presented in [Bonnans et al.
'22], called the MIQP. The objective is to solve the following
problem:

1
minimize 2 |Ax — 7|* =
xe{0,1}N

i)

with N, M positive integers, A € My n(R) and y € RM.
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We tested our algorithm on a problem presented in [Bonnans et al.
'22], called the MIQP. The objective is to solve the following
problem:

1
minimize 2 |Ax — 7|* =
xe{0,1}N

N Z Aixi — H
with N, M positive integers, A € My y(R) and y € RM.
In our computations, we took
e N =100 and M = 50.
e A with coefficients taken randomly, following a uniform law
over [0, 1].
@ y with coordinates taken randomly, following a uniform law
over [0, N/2].
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We compare three algorithms.
@ The Frank-Wolfe algorithm, investigated in [Bonnans et al.
'22].
@ The Fully-Corrective Frank-Wolfe algorithm, which is

equivalent to our cutting-plane method, for two tolerances for
Problem (P;)

@ The Algorithm from Chambolle-Pock, for both the ergodic and
nonergodic sequences.
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Comparing the results

All primal errors All dual errors

10
— FW — FW
FCFW, 1e-8 100 FCFW, le-8
1071 —— FCFW, 110 —— FCFW, 1e-10
—— CP nonergodic —— CP nonergodic
CP ergodic 107 > CP ergodic
1072
107
i
10-®
107
10
10 100 102 108 10 100 10 10° 108 10*
(a) Primal errors (b) Dual errors

Figure: Comparison of the primal and dual errors for all algorithms, in
log-log scale
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Comparing the results

All primal errors All dual errors

— FW
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—— CP nonergodic
CPergadic

— FW
FCFW, le-8
—— FCFW, le-10

— P nonergodic
- o

CPergodic

(a) Primal errors (b) Dual errors

Figure: Comparison of the primal and dual errors for all algorithms, in
log-log scale

@ On this example, the FCFW is clearly much more effective, at
least on the first iterations.

@ However, these curves can be misleading. An iteration of the
FCFW can indeed become very difficult to compute.
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