Cutting-plane algorithm

Chambolle-Pock

Numerical results

Aggregative Nonconvex Optimization: Two Dual-Based Methods

Thibault Moquet

PhD supervisors: Guilherme Mazanti, Laurent Pfeiffer

L2S, CentraleSupélec, Université Paris-Saclay Fédération de Mathématiques

February 2023

Introduction 0000	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Summary				

2 Framework

3 Cutting-plane algorithm

4 Chambolle-Pock algorithm

5 Numerical results

Introduction ●000	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Summary				

- 2 Framework
- Outting-plane algorithm
- 4 Chambolle-Pock algorithm
- 5 Numerical results

The objective is to solve the following problem:

$$\underset{x \in \mathcal{X}}{\text{minimize } f\left(\frac{1}{N}\sum_{i=1}^{N}g_{i}(x_{i})\right)}.$$

This is a multi-agent problem, where the choices (x_1, \ldots, x_N) are only seen through the **aggregate term** $\frac{1}{N} \sum_{i=1}^{N} g_i(x_i)$.

- Vanishing Price of Decentralization in Large Coordnative nonconvex Optimization, M. Wang in SIOPT 2017.
- Large-scale nonconvex optimization: randomization, gap estimate and numerical resolution, J.F. Bonnans, K. Liu, N. Oudjane, L. Pfeiffer and C. Wan, ArXiv preprint 2022.

Introduction 000●	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Example				

- N power plants.
- x_i : decision variable associated to agent $i \in \{1, ..., N\}$ \rightarrow production $g_i(x_i)$.
- *f* penalizes the difference with a demand.

2 Framework

Outting-plane algorithm

4 Chambolle-Pock algorithm

5 Numerical results

- *E* Hilbert space, with its inner product ⟨·,·⟩_E and its deriving norm ||·||_E. Sometimes refered to as aggregate space.
- Function $f: \mathcal{E} \to \mathbb{R}$.
- Positive integer N.

- \mathcal{E} Hilbert space, with its inner product $\langle \cdot, \cdot \rangle_{\mathcal{E}}$ and its deriving norm $\| \cdot \|_{\mathcal{E}}$. Sometimes refered to as aggregate space.
- Function $f: \mathcal{E} \to \mathbb{R}$.
- Positive integer N.
- For $i \in \{1, \ldots, N\}$, set \mathcal{X}_i and function $g_i \colon \mathcal{X}_i \to \mathcal{E}$.
- Product set $\mathcal{X} \coloneqq \prod_{i=1}^{N} \mathcal{X}_i$, with its elements denoted $x = (x_1, \dots, x_N)$.

- \mathcal{E} Hilbert space, with its inner product $\langle \cdot, \cdot \rangle_{\mathcal{E}}$ and its deriving norm $\| \cdot \|_{\mathcal{E}}$. Sometimes refered to as aggregate space.
- Function $f: \mathcal{E} \to \mathbb{R}$.
- Positive integer N.
- For $i \in \{1, \ldots, N\}$, set \mathcal{X}_i and function $g_i \colon \mathcal{X}_i \to \mathcal{E}$.
- Product set $\mathcal{X} \coloneqq \prod_{i=1}^{N} \mathcal{X}_i$, with its elements denoted $x = (x_1, \dots, x_N)$.

The problem

$$\underset{x \in \mathcal{X}}{\text{minimize } f\left(\frac{1}{N}\sum_{i=1}^{N}g_{i}(x_{i})\right)}.$$
 (P)

Assumptions

Assumption

- For all $i \in \{1, ..., N\}$, the set $g_i(\mathcal{X}_i)$ is compact.
- The function f is convex, and is β-strongly smooth (which can be shown to be equivalent to f having β-Lipschitz gradient).

Assumptions

Assumption

- For all $i \in \{1, ..., N\}$, the set $g_i(\mathcal{X}_i)$ is compact.
- The function f is convex, and is β-strongly smooth (which can be shown to be equivalent to f having β-Lipschitz gradient).

Remark

No assumptions on the sets X_i and the functions g_i per se, in particular in terms of structure or regularity.

Lemma

Under these assumptions, Problem (P) has a solution.

 Introduction
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

 Geometric formulation, relaxation
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

Geometric formulation:

$$\mathcal{Y}_{i} = g_{i}(\mathcal{X}_{i}) \quad \text{and} \quad \mathcal{Y} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{Y}_{i}$$
$$(P) \longleftrightarrow \underset{y \in \mathcal{Y}}{\text{minimize}} f(y) \longleftrightarrow \underset{y_{i} \in \mathcal{Y}_{i}}{\text{minimize}} f\left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)$$

 Introduction
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

 Geometric formulation, relaxation
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

Geometric formulation:

$$\mathcal{Y}_{i} = g_{i}(\mathcal{X}_{i}) \quad \text{and} \quad \mathcal{Y} = \frac{1}{N} \sum_{i=1}^{N} \mathcal{Y}_{i}$$
$$(P) \longleftrightarrow \underset{y \in \mathcal{Y}}{\text{minimize}} f(y) \longleftrightarrow \underset{y_{i} \in \mathcal{Y}_{i}}{\text{minimize}} f\left(\frac{1}{N} \sum_{i=1}^{N} y_{i}\right)$$

Convex relaxation:

$$\underset{a^{i} \in \mathcal{P}(\mathcal{Y}_{i})}{\text{minimize}} f\left(\frac{1}{N} \sum_{i=1}^{N} \mathbb{E}[a^{i}]\right), \qquad (\tilde{P})$$

where, for all $a^i \in \mathcal{M}(\mathcal{Y}_i)$, $\mathbb{E}[a^i] \coloneqq \int_{\mathcal{Y}_i} y_i da^i(y_i)$.

Relaxation gap: quantity $Val(P) - Val(\tilde{P}) \ge 0$. May be positive.

- In [Bonnans et al. '22]
 - Estimate of the relaxation gap (tends to 0 when $N \to +\infty$).
 - Method to **recover** an approximate solution of Problem (P) from an approximate solution of Problem (\tilde{P}) (efficient when N large).

We want N large

+ focus on the resolution of Problem (\tilde{P}) , with dual-based methods.

Introduction 0000	Framework ooooooooo	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Lagragian	function			

$$\tilde{\mathcal{Y}} = \prod_{i=1}^{N} \mathcal{Y}_{i}, \qquad \tilde{\mathcal{M}}(\tilde{\mathcal{Y}}) = \prod_{i=1}^{N} \mathcal{M}(\mathcal{Y}_{i}), \qquad \tilde{\mathcal{P}}(\tilde{\mathcal{Y}}) = \prod_{i=1}^{N} \mathcal{P}(\mathcal{Y}_{i})$$

There is a bounded linear operator $\mathcal{K} \colon \mathcal{E} \to \prod_{i=1}^{N} \mathcal{C}(\mathcal{Y}_i)$ such that

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[a^{i}]=-K^{*}a.$$

Introduction 0000	Framework ooooooooo	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Lagragian	function			

$$\tilde{\mathcal{Y}} = \prod_{i=1}^{N} \mathcal{Y}_i, \qquad \tilde{\mathcal{M}}(\tilde{\mathcal{Y}}) = \prod_{i=1}^{N} \mathcal{M}(\mathcal{Y}_i), \qquad \tilde{\mathcal{P}}(\tilde{\mathcal{Y}}) = \prod_{i=1}^{N} \mathcal{P}(\mathcal{Y}_i)$$

There is a bounded linear operator $K \colon \mathcal{E} \to \prod_{i=1}^{N} \mathcal{C}(\mathcal{Y}_i)$ such that

$$\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}[a^{i}]=-K^{*}a.$$

Lagrangian function $\hat{L} \colon \tilde{\mathcal{M}}(\tilde{\mathcal{Y}}) \times \mathcal{E} \to \mathbb{\bar{R}}.$

$$\hat{L}(a,\mu) = \begin{cases} -f^*(\mu) + \langle \mu, -K^*a \rangle_{\mathcal{E}} + \iota_{\tilde{\mathcal{P}}(\tilde{\mathcal{Y}})}(a) & \text{if } \mu \in \text{dom}(f^*).\\ -\infty & \text{otherwise.} \end{cases}$$

where $f^* \colon \mathcal{E} \to \overline{\mathbb{R}}$ is the Fenchel transform of f, defined as

$$f^*(\mu) = \sup_{\lambda \in \mathcal{E}} \langle \lambda, \mu
angle_{\mathcal{E}} - f(\lambda).$$

Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical

Dual problem: Saddle-point

We have

$$(\tilde{P}) \longleftrightarrow \min_{a \in \tilde{\mathcal{M}}(\tilde{\mathcal{Y}})} \sup_{\mu \in \mathcal{E}} \hat{L}(a, \mu).$$

Dual Problem:
$$\max_{\mu \in \mathcal{E}} \inf_{a \in \tilde{\mathcal{M}}(\tilde{\mathcal{Y}})} \hat{L}(a, \mu)$$

(D)

Chambolle-Pock

General Lemma

Lemma

We have

- Problems (P) and (\tilde{P}) have same dual (D).
- There is no duality gap between Problems (P̃) and (D), i.e. Problems (P̃) and (D) have same value V. Moreover, Problem (D) has a solution µ*.
- Problem (P̃) has a solution.

 Introduction
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

 Other formulation of duality
 Other formulation of duality
 Other formulation
 <

Dual function $Q: \mathcal{E} \to \overline{\mathbb{R}}$

$$egin{aligned} Q(\mu) &= -f^*(\mu) + rac{1}{N}\sum_{i=1}^N \left(\inf_{y_i\in\mathcal{Y}_i}\langle\mu,y_i
angle_\mathcal{E}
ight) \ & (D) &\longleftrightarrow ext{maximize} \ Q(\mu) \end{aligned}$$

Q is strongly concave (since f^* is strongly convex) + decomposed along the sets \mathcal{Y}_i .

Introduction 0000	Framework 000000000	Cutting-plane algorithm ●000000	Chambolle-Pock	Numerical results
<u> </u>				

Summary

1 Introduction

2 Framework

3 Cutting-plane algorithm

4 Chambolle-Pock algorithm

5 Numerical results

- In [Wang '17], the following general approach is investigated:
 - Find an approximate solution of Problem (D).
 - **Reconstruct** an approximate solution for Problem (\tilde{P}) from it.

- In [Wang '17], the following general approach is investigated:
 - Find an approximate solution of Problem (D).
 - **Reconstruct** an approximate solution for Problem (\tilde{P}) from it.
- The first method we propose is as follows:
 - Same Cutting-plane algorithm as in [Wang '17] to solve Problem (D).
 - Primal reconstruction different from [Wang '17], easier to implement in our opinion.

Introduction 0000	Framework 000000000	Cutting-plane algorithm 00●0000	Chambolle-Pock	Numerical results
General a	lgorithm			

Algorithm Cutting-Plane Algorithm

Б

Require:
$$\mu^0 \in \mathcal{E}$$
.
for t=0, 1, ... do
At Iteration t, we have $\mu^t \in \mathcal{E}$ and $(a^k)_{k \in \{0, ..., t-1\}} \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})^t$.
Step 1: Find $a^t \in \underset{a \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})}{\operatorname{Step 2:}}$ Set the approximated dual function
 $Q_{t+1} \coloneqq \min_{k \in \{0, ..., t\}} \hat{L}(a^k, \cdot) = \min_{a \in \operatorname{conv}\{a^k, k \in \{0, ..., t\}\}} \hat{L}(a, \cdot)$.
Step 3: Find a dual candidate $\mu^{t+1} \in \operatorname{argmax}_{\mu \in \mathcal{E}} Q_{t+1}(\mu)$.
Step 4: Find \tilde{a}^{t+1} a primal candidate.
end for

Introduction 0000	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Interpretat	ion			

Definition

We call **cut** a function of the form $\mu \in \mathcal{E} \mapsto \hat{L}(\bar{a}, \mu)$, for a given \bar{a} . We say that it is **exact** at μ if $\hat{L}(\bar{a}, \mu) = Q(\mu) = \inf_{a \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})} \hat{L}(a, \mu)$.

Interpretation

Definition

We call **cut** a function of the form $\mu \in \mathcal{E} \mapsto \hat{L}(\bar{a}, \mu)$, for a given \bar{a} . We say that it is **exact** at μ if $\hat{L}(\bar{a}, \mu) = Q(\mu) = \inf_{a \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})} \hat{L}(a, \mu)$.

- Step 1: find an exact cut at μ^t.
 Best-response procedure (we can take a^t as a N-tuple of Dirac measures).
- Step 2: update the approximation of Q.
- Step 4, in [Wang '17]: almost-projection algorithm. We follow a different idea. Results from the study of Step 3.

Convergence results

Theorem

There exists C such that the following assertions hold:

• We have the following dual convergence speeds:

$$V - Q\left(\hat{\mu}^t
ight) \leq rac{\mathcal{C}}{t} \quad \textit{and} \quad \|\mu^* - \hat{\mu}^t\|_{\mathcal{E}} \leq rac{\mathcal{C}}{\sqrt{t}}$$

where $\hat{\mu}^t \in \underset{k \in \{0,...,t\}}{\operatorname{argmax}} Q(\mu^k).$

2 We have the following primal convergence speed:

$$f\left(-K^*\tilde{a}^t\right)-V\leq rac{C}{\sqrt{t}}.$$

Chambolle-Pock

Convergence results

Theorem

There exists C such that the following assertions hold:

• We have the following dual convergence speeds:

$$V - Q\left(\hat{\mu}^t
ight) \leq rac{\mathcal{C}}{t} \quad \textit{and} \quad \|\mu^* - \hat{\mu}^t\|_{\mathcal{E}} \leq rac{\mathcal{C}}{\sqrt{t}}$$

where $\hat{\mu}^t \in \underset{k \in \{0, ..., t\}}{\operatorname{argmax}} Q(\mu^k).$

2 We have the following primal convergence speed:

$$f\left(-K^*\tilde{a}^t\right)-V\leq rac{C}{\sqrt{t}}.$$

Improves [Wang '17] (no assumption of strong convexity of f).

Formulate the previous algorithm only in terms of a^t and \tilde{a}^{t+1} .

Algorithm Equivalent Fully-Corrective Frank-Wolfe algorithm

Require:
$$\tilde{a}^{0} \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})$$
.
for t=0, 1, ... do
Find $a^{t} \in \operatorname{argmin}_{a \in \tilde{\mathcal{P}}(\tilde{\mathcal{Y}})} \underbrace{\nabla f(-K^{*}\tilde{a}^{t})}_{\mu^{t}}, -K^{*}a\rangle_{\mathcal{E}}$.
Find \tilde{a}^{t+1} solution of

$$\min_{\tilde{a} \in \operatorname{conv}\{a^{k}, k \in \{0, ..., t\}\}} f(-K^{*}\tilde{a})$$
end for

 Introduction
 Framework
 Cutting-plane algorithm
 Chambolle-Pock
 Numerical results

 Better primal convergence result
 Version
 Version

Yields a better primal convergence speed.

Theorem

There exists C such that for all t,

$$f\left(-K^{*}\tilde{a}^{t}
ight)-V\leqrac{C}{t}$$

Introduction 0000	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock ●0000	Numerical results
Summary				

2 Framework

3 Cutting-plane algorithm

4 Chambolle-Pock algorithm

5 Numerical results

We have

$$(D) \longleftrightarrow \min_{\mu \in \mathcal{E}} \sup_{a \in \tilde{\mathcal{M}}(\tilde{\mathcal{Y}})} - \hat{L}(a, \mu).$$

We use [Chambolle, Pock '16], Algorithm 4. It is the best-suited algorithm from [Chambolle, Pock '16] for our problem.

- Makes use of the strong convexity of f^* .
- Allows for the use of a nonlinear proximity operator D_a.
 We use one deriving from the Kullback-Leibler divergence (well-suited for *P*(*Y*)).

We have

$$(D) \longleftrightarrow \min_{\mu \in \mathcal{E}} \sup_{a \in \tilde{\mathcal{M}}(\tilde{\mathcal{Y}})} - \hat{L}(a, \mu).$$

We use [Chambolle, Pock '16], Algorithm 4. It is the best-suited algorithm from [Chambolle, Pock '16] for our problem.

- Makes use of the strong convexity of f^* .
- Allows for the use of a nonlinear proximity operator D_a.
 We use one deriving from the Kullback-Leibler divergence (well-suited for *P*(*Y*)).

Assumption

- The sets \mathcal{Y}_i are finite, of cardinal n_i .
- For all $\tau > 0$, we can compute

$$prox_{\tau f} \coloneqq \operatorname*{argmin}_{\mu \in \mathcal{E}} f + \frac{1}{2\tau} \|\mu - \cdot\|_{\mathcal{E}}^2.$$

Algorithm Accelerated primal-dual algorithm

Require: Initial guesses $\mu^{-1} = \mu^0 \in \mathcal{E}$ and $a^0 \in \operatorname{ri}(\tilde{\mathcal{P}}(\tilde{\mathcal{Y}}))$, sequences $(\theta_t)_{t\in\mathbb{N}}, (\tau_t)_{t\in\mathbb{N}}, (\sigma_t)_{t\in\mathbb{N}} \in (\mathbb{R}^*_+)^{\mathbb{N}}$ well-chosen. for $t \in \mathbb{N}$ do $a^{t+1} = \operatorname*{argmin}_{a\in\tilde{\mathcal{P}}(\tilde{\mathcal{Y}})} - \langle \mu^t + \theta_t(\mu^t - \mu^{t-1}), K^*a \rangle_{\mathcal{E}} + \frac{1}{\sigma_t} D_a(a, a^t)$. $\mu^{t+1} = \operatorname*{argmin}_{\mu\in\mathcal{E}} \langle \mu, K^*a \rangle_{\mathcal{E}} + f^*(\mu) + \frac{1}{2\tau_t} \|\mu - \mu^t\|_{\mathcal{E}}^2$. end for

Chambolle-Pock 000●0

Convergence result

Theorem

For well-chosen sequences $(\theta_t)_{t\in\mathbb{N}}, (\tau_t)_{t\in\mathbb{N}}, (\sigma_t)_{t\in\mathbb{N}} \in (\mathbb{R}^*_+)^{\mathbb{N}}$, there exists C, which depends on the data of the problem such that, for all T > 1

•
$$f\left(-K^*A^T\right) - V \leq \frac{C}{T^2}$$

•
$$V = Q(M) \leq \frac{1}{T^2}$$

• $\|M^T - \mu^*\|_{\mathcal{E}} \leq \frac{\sqrt{2\beta C}}{T}$

with for all $T \in \mathbb{N}^*$:

$$S^{T} = \sum_{t=1}^{T} \frac{\sigma_{t-1}}{\sigma_0}, \quad M^{T} = \frac{1}{S^{T}} \sum_{t=1}^{T} \frac{\sigma_{t-1}}{\sigma_0} \mu^t, \quad A^{T} = \frac{1}{S^{T}} \sum_{t=1}^{T} \frac{\sigma_{t-1}}{\sigma_0} a^t.$$

More specifically, the constant C depends on

- The initial guesses (μ^0, a^0) .
- The Lipschitz constant β of ∇f .
- The operator norm $\|K\| = \max_{i \in \{1,...,N\}} \max_{y_i \in \mathcal{Y}_i} \|y_i\|_{\mathcal{E}}.$
- The cardinals of the sets \mathcal{Y}_i , or more precisely $\max_{i \in \{1, ..., N\}} n_i$.

Convergence result II

More specifically, the constant C depends on

- The initial guesses (μ^0, a^0) .
- The Lipschitz constant β of ∇f .
- The operator norm $\|\mathcal{K}\| = \max_{i \in \{1, ..., N\}} \max_{y_i \in \mathcal{Y}_i} \|y_i\|_{\mathcal{E}}.$
- The cardinals of the sets \mathcal{Y}_i , or more precisely $\max_{i \in \{1, ..., N\}} n_i$.

In particular, it depends *directly* on *N* only through the dependence in *N* of the functions g_i and of the sets \mathcal{X}_i , if there is one.

Introduction	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results
Summary				

- 2 Framework
- Outting-plane algorithm
- 4 Chambolle-Pock algorithm
- 5 Numerical results

Introduction 0000	Framework 000000000	Cutting-plane algorithm	Chambolle-Pock	Numerical results 0●00
Problem				

We tested our algorithm on a problem presented in [Bonnans et al. '22], called the MIQP. The objective is to solve the following problem:

$$\underset{x \in \{0,1\}^{N}}{\text{minimize}} \ \frac{1}{N^{2}} \|Ax - \bar{y}\|^{2} = \left\| \frac{1}{N} \sum_{i=1}^{N} \left(A_{i} x_{i} - \frac{\bar{y}}{N} \right) \right\|^{2}$$

with N, M positive integers, $A \in \mathcal{M}_{M,N}(\mathbb{R})$ and $\bar{y} \in \mathbb{R}^{M}$.

We tested our algorithm on a problem presented in [Bonnans et al. '22], called the MIQP. The objective is to solve the following problem:

$$\underset{x \in \{0,1\}^{N}}{\text{minimize}} \ \frac{1}{N^{2}} \|Ax - \bar{y}\|^{2} = \left\| \frac{1}{N} \sum_{i=1}^{N} \left(A_{i} x_{i} - \frac{\bar{y}}{N} \right) \right\|^{2}$$

with N, M positive integers, $A \in \mathcal{M}_{M,N}(\mathbb{R})$ and $\bar{y} \in \mathbb{R}^{M}$. In our computations, we took

- N = 100 and M = 50.
- A with coefficients taken randomly, following a uniform law over [0, 1].
- \bar{y} with coordinates taken randomly, following a uniform law over [0, N/2].

We compare three algorithms.

- The Frank-Wolfe algorithm, investigated in [Bonnans et al. '22].
- The Fully-Corrective Frank-Wolfe algorithm, which is equivalent to our cutting-plane method, for two tolerances for Problem (\tilde{P}_t)
- The Algorithm from Chambolle-Pock, for both the ergodic and nonergodic sequences.

Framework

Cutting-plane algorithm

Chambolle-Poc

Numerical results

Comparing the results

Figure: Comparison of the primal and dual errors for all algorithms, in log-log scale

Framework

Cutting-plane algorithm

Chambolle-Pock

Numerical results

Comparing the results

Figure: Comparison of the primal and dual errors for all algorithms, in log-log scale

- On this example, the FCFW is clearly much more effective, at least on the first iterations.
- However, these curves can be misleading. An iteration of the FCFW can indeed become very difficult to compute.