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Objective

The objective is to solve the following problem:

minimize
x∈X

f

(
1
N

N∑
i=1

gi (xi )

)
.

This is a multi-agent problem, where the choices (x1, . . . , xN) are
only seen through the aggregate term 1

N

∑N
i=1 gi (xi ).
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Example

N power plants.
xi : decision variable associated to agent i ∈ {1, . . . ,N}
→ production gi (xi ).
f penalizes the difference with a demand.
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Setting

E Hilbert space, with its inner product ⟨ · , · ⟩E and its deriving
norm ∥ · ∥E . Sometimes refered to as aggregate space.
Function f : E → R.
Positive integer N.

For i ∈ {1, . . . ,N}, set Xi and function gi : Xi → E .
Product set X :=

∏N
i=1Xi , with its elements denoted

x = (x1, . . . , xN).
The problem

minimize
x∈X

f

(
1
N

N∑
i=1

gi (xi )

)
. (P)
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Assumptions

Assumption

For all i ∈ {1, . . . ,N}, the set gi
(
Xi

)
is compact.

The function f is convex, and is β-strongly smooth (which can
be shown to be equivalent to f having β-Lipschitz gradient).

Remark
No assumptions on the sets Xi and the functions gi per se, in
particular in terms of structure or regularity.

Lemma
Under these assumptions, Problem (P) has a solution.
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Geometric formulation, relaxation

Geometric formulation:

Yi = gi
(
Xi ) and Y =

1
N

N∑
i=1

Yi

(P)←→ minimize
y∈Y

f (y)←→ minimize
yi∈Yi

f

(
1
N

N∑
i=1

yi

)

Convex relaxation:

minimize
ai∈P(Yi )

f

(
1
N

N∑
i=1

E[ai ]

)
, (P̃)

where, for all ai ∈M(Yi ), E[ai ] :=
∫
Yi

yida
i (yi ).



Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical results

Geometric formulation, relaxation

Geometric formulation:

Yi = gi
(
Xi ) and Y =

1
N

N∑
i=1

Yi

(P)←→ minimize
y∈Y

f (y)←→ minimize
yi∈Yi

f

(
1
N

N∑
i=1

yi

)

Convex relaxation:

minimize
ai∈P(Yi )

f

(
1
N

N∑
i=1

E[ai ]

)
, (P̃)

where, for all ai ∈M(Yi ), E[ai ] :=
∫
Yi

yida
i (yi ).



Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical results

Advantages of the relaxation

Relaxation gap: quantity Val(P)− Val(P̃) ≥ 0. May be positive.

In [Bonnans et al. ’22]
Estimate of the relaxation gap (tends to 0 when N → +∞).
Method to recover an approximate solution of Problem (P)
from an approximate solution of Problem (P̃) (efficient when
N large).

We want N large
+ focus on the resolution of Problem (P̃), with dual-based
methods.
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Lagragian function

Ỹ =
N∏
i=1

Yi , M̃
(
Ỹ
)
=

N∏
i=1

M
(
Yi
)
, P̃

(
Ỹ
)
=

N∏
i=1

P(Yi )

There is a bounded linear operator K : E →
∏N

i=1 C
(
Yi
)

such that

1
N

N∑
i=1

E[ai ] = −K ∗a.

Lagrangian function L̂ : M̃
(
Ỹ
)
× E → R̄.

L̂(a, µ) =

{
−f ∗(µ) + ⟨µ,−K ∗a⟩E + ιP̃(Ỹ)(a) if µ ∈ dom(f ∗).
−∞ otherwise.

where f ∗ : E → R̄ is the Fenchel transform of f , defined as

f ∗(µ) = sup
λ∈E
⟨λ, µ⟩E − f (λ).
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Dual problem: Saddle-point

We have
(P̃)←→ minimize

a∈M̃(Ỹ)
sup
µ∈E

L̂(a, µ).

Dual Problem:
maximize

µ∈E
inf

a∈M̃(Ỹ)
L̂(a, µ) (D)
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General Lemma

Lemma
We have

1 Problems (P) and (P̃) have same dual (D).
2 There is no duality gap between Problems (P̃) and (D), i.e.

Problems (P̃) and (D) have same value V . Moreover,
Problem (D) has a solution µ∗.

3 Problem (P̃) has a solution.
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Other formulation of duality

Dual function Q : E → R̄

Q(µ) = −f ∗(µ) + 1
N

N∑
i=1

(
inf

yi∈Yi

⟨µ, yi ⟩E
)

(D)←→ maximize
µ∈E

Q(µ)

Q is strongly concave (since f ∗ is strongly convex)
+ decomposed along the sets Yi .
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Approach

In [Wang ’17], the following general approach is investigated:
Find an approximate solution of Problem (D).
Reconstruct an approximate solution for Problem (P̃) from it.

The first method we propose is as follows:
Same Cutting-plane algorithm as in [Wang ’17] to solve
Problem (D).
Primal reconstruction different from [Wang ’17], easier to
implement in our opinion.
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General algorithm

Algorithm Cutting-Plane Algorithm

Require: µ0 ∈ E .
for t=0, 1, . . . do

At Iteration t, we have µt ∈ E and
(
ak
)
k∈{0, ...,t−1} ∈ P̃

(
Ỹ
)t .

Step 1: Find at ∈ argmin
a∈P̃(Ỹ)

L̂(a, µt).

Step 2: Set the approximated dual function

Qt+1 := min
k∈{0, ...,t}

L̂(ak , · ) = min
a∈conv{ak ,k∈{0, ...,t}}

L̂(a, · ).

Step 3: Find a dual candidate µt+1 ∈ argmax
µ∈E

Qt+1(µ).

Step 4: Find ãt+1 a primal candidate.
end for
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Interpretation

Definition

We call cut a function of the form µ ∈ E 7→ L̂(ā, µ), for a given ā.
We say that it is exact at µ if L̂(ā, µ) = Q(µ) = inf

a∈P̃(Ỹ)
L̂(a, µ).

Step 1: find an exact cut at µt .
Best-response procedure (we can take at as a N-tuple of Dirac
measures).
Step 2: update the approximation of Q.

Step 4, in [Wang ’17]: almost-projection algorithm.
We follow a different idea. Results from the study of Step 3.
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Convergence results

Theorem
There exists C such that the following assertions hold:

1 We have the following dual convergence speeds:

V − Q
(
µ̂t
)
≤ C

t
and ∥µ∗ − µ̂t∥E ≤

C√
t
.

where µ̂t ∈ argmax
k∈{0, ...,t}

Q(µk).

2 We have the following primal convergence speed:

f
(
−K ∗ãt

)
− V ≤ C√

t
.

Improves [Wang ’17] (no assumption of strong convexity of f ).
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Primal algorithm

Formulate the previous algorithm only in terms of at and ãt+1.

Algorithm Equivalent Fully-Corrective Frank-Wolfe algorithm

Require: ã0 ∈ P̃
(
Ỹ
)
.

for t=0, 1, . . . do
Find at ∈ argmin

a∈P̃(Ỹ)

⟨∇f
(
−K ∗ãt

)︸ ︷︷ ︸
µt

,−K ∗a⟩E .

Find ãt+1 solution of

minimize
ã∈conv{ak , k∈{0, ...,t}}

f (−K ∗ã)

end for
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Better primal convergence result

Yields a better primal convergence speed.

Theorem
There exists C such that for all t,

f
(
−K ∗ãt

)
− V ≤ C

t
.
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Context

We have
(D)←→ minimize

µ∈E
sup

a∈M̃(Ỹ)

−L̂(a, µ).

We use [Chambolle, Pock ’16], Algorithm 4. It is the best-suited
algorithm from [Chambolle, Pock ’16] for our problem.

Makes use of the strong convexity of f ∗.
Allows for the use of a nonlinear proximity operator Da.
We use one deriving from the Kullback-Leibler divergence
(well-suited for P̃(Ỹ)).

Assumption
The sets Yi are finite, of cardinal ni .
For all τ > 0, we can compute

proxτ f := argmin
µ∈E

f +
1
2τ
∥µ− ·∥2E .
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Accelerated primal-dual algorithm

Algorithm Accelerated primal-dual algorithm

Require: : Initial guesses µ−1 = µ0 ∈ E and a0 ∈ ri
(
P̃
(
Ỹ
))

,
sequences (θt)t∈N , (τt)t∈N , (σt)t∈N ∈

(
R∗
+

)N well-chosen.
for t ∈ N do

at+1 = argmin
a∈P̃(Ỹ)

− ⟨µt + θt(µ
t − µt−1),K ∗a⟩E + 1

σt
Da(a, a

t).

µt+1 = argmin
µ∈E

⟨µ,K ∗a⟩E + f ∗(µ) + 1
2τt ∥µ− µt∥2E .

end for
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Convergence result

Theorem

For well-chosen sequences (θt)t∈N , (τt)t∈N , (σt)t∈N ∈
(
R∗
+

)N,
there exists C , which depends on the data of the problem such
that, for all T > 1

f
(
−K ∗AT

)
− V ≤ C

T 2

V − Q
(
MT

)
≤ C

T 2

∥MT − µ∗∥E ≤
√

2βC
T

with for all T ∈ N∗:

ST =
T∑
t=1

σt−1

σ0
, MT =

1
ST

T∑
t=1

σt−1

σ0
µt , AT =

1
ST

T∑
t=1

σt−1

σ0
at .
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Convergence result II

More specifically, the constant C depends on
The initial guesses (µ0, a0).
The Lipschitz constant β of ∇f .
The operator norm ∥K∥ = max

i∈{1, ...,N}
max
yi∈Yi

∥yi∥E .

The cardinals of the sets Yi , or more precisely max
i∈{1, ...,N}

ni .

In particular, it depends directly on N only through the dependence
in N of the functions gi and of the sets Xi , if there is one.
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Problem

We tested our algorithm on a problem presented in [Bonnans et al.
’22], called the MIQP. The objective is to solve the following
problem:

minimize
x∈{0,1}N

1
N2 ∥Ax − ȳ∥2 =

∥∥∥∥∥ 1
N

N∑
i=1

(
Aixi −

ȳ

N

)∥∥∥∥∥
2

with N,M positive integers, A ∈MM,N(R) and ȳ ∈ RM .

In our computations, we took
N = 100 and M = 50.
A with coefficients taken randomly, following a uniform law
over [0, 1].
ȳ with coordinates taken randomly, following a uniform law
over [0,N/2].



Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical results

Problem

We tested our algorithm on a problem presented in [Bonnans et al.
’22], called the MIQP. The objective is to solve the following
problem:

minimize
x∈{0,1}N

1
N2 ∥Ax − ȳ∥2 =
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ȳ with coordinates taken randomly, following a uniform law
over [0,N/2].



Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical results

Results

We compare three algorithms.
The Frank-Wolfe algorithm, investigated in [Bonnans et al.
’22].
The Fully-Corrective Frank-Wolfe algorithm, which is
equivalent to our cutting-plane method, for two tolerances for
Problem (P̃t)

The Algorithm from Chambolle-Pock, for both the ergodic and
nonergodic sequences.
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Comparing the results

(a) Primal errors (b) Dual errors

Figure: Comparison of the primal and dual errors for all algorithms, in
log-log scale

On this example, the FCFW is clearly much more effective, at
least on the first iterations.
However, these curves can be misleading. An iteration of the
FCFW can indeed become very difficult to compute.



Introduction Framework Cutting-plane algorithm Chambolle-Pock Numerical results

Comparing the results

(a) Primal errors (b) Dual errors

Figure: Comparison of the primal and dual errors for all algorithms, in
log-log scale

On this example, the FCFW is clearly much more effective, at
least on the first iterations.
However, these curves can be misleading. An iteration of the
FCFW can indeed become very difficult to compute.


	Introduction
	Framework
	Cutting-plane algorithm
	Chambolle-Pock algorithm
	Numerical results

