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Present and Future Trends
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Onboard DC Microgrids (9.>
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High-power generator
Power sharing control
Battery
Fuel cell

Propulsion motors
(distributed)

Power distribution &
protection
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Key: Red - major challenge; Blue - significant challenge; Grey - work required but risk manageable; White - N/A

*Aerospace Technology Institute, INSIGHT_07: Electrical Power System.



Technical Challenges Csy

CentraleSupélec

Aircraft subsystem to be Architecture and Energy generation and Electrical machines Power electronics
upgraded interconnect storage

High-power generator

Power sharing control

Battery

Fuel cell

Propulsion motors
(distributed)

Power distribution &
protection

Overall system power
demands

Key: Red - major challenge; Blue - significant challenge; Grey - work required but risk manageable; White - N/A

*Aerospace Technology Institute, INSIGHT_07: Electrical Power System.



System modelling %

CentraleSupélec

U,
LV HV
a @ G ]V1 \ / Uny \/
u Lyy  rsuv dpny @ iny gHV

o = Un T, g icpL ipy Unv
Ln rs,n iL,n In <Q <> e CHV—— VHV CT)
) ® (&
‘E Cn——lv Constant power loads (CPLs)
A1 = = = = = P =icp Viy
di I j — j — 7 z . . —
LS g = (1 —w)V lep, = lpy —lgy + ' 9iVi = Viy)
dt C . i=1
dv; ' Vie{l, .., n}
G = A —w )iy — i
di;, vy .
HV  gp = Viv = Tsavipay — (1 — ugy)Vay

—— =1 —uyy )i — i
HV ¢ ( HV)L,HV HV



Adaptive droop control C’f.)
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TV = V' =V, —mji, vje{l, .., nHV}

Drawbacks:
= Mismatches in output/line resistances cause inaccurate power sharing.
= Trade-off between the voltage regulation and load power sharing.
= External protection circuits/limiters are required under faulty conditions.

Proposed robust droop for converters interfacing BESS (HV interconnection) takes the form.

: m; - . . .
V=V -V ———5i;, Vie{l,.,n} TavVay = Vv — Vv — m(igy — iser)
SOC;
Form; = m, = --- = m,, one obtains
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which can guarantee load power sharing
proportional to the BESS instantaneous state of
charge.



Adaptive droop control

Suppressing circulating currents

E.g. for two BESS at the LV bus, one has the circulating current i as
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Voltage reference selection to avoid voltage collapse

I/* selection is made satisfying an inequality of the form
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Consider the input duty-ratio defined as

U; = 1 — U] _®l+ rvrjiL:j
! Vi

ki
6 =~ (i1, V;)cos(q;)
v,J

where f is a smooth functions that incorporates the adaptive droop control, or the current
control for HV interconnection

V=V ——— i vVie{l }
i; i R ()
L SOCip '

Vay — Vay — m(igy — iset)

fin; V) =

Assumption. The present approach considers at least one converter-interfaced source
connected to the low-voltage bus to stabilise the bus voltage.
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By replacing the control input u; into the current dynamics, one obtains the closed-loop current dynamics

di,
% = Emax,jsin(0j) = (7o + 7)1,

At steady state, there is

. Emax,jSin(O-j)
lL,j =

T'v, j

Emax,j

Proposition 2. The solution iL,j(t) with the initial condition iL,j(O) < is uniformly ultimately bounded, i.e.

Tv’ ]

|lL,j (t)| = lZl-ax, VvV t > 0, with the maximum current given as Lz”fx — maxj

Tv’ ]

Proof. Consider the following continuously differentiable Lyaponov function candidate
1
W =5 L,
By taking the time derivative

Wj = — (15 +1,;)if j + Emax,jsin(0;)iy,;
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By taking the time derivative
Wi < =(rs; +15,7)iL; + |Emax,jsin(oy)| i |

Given g; € l— %,gl from the nonlinear sl-PID design, one has

)

I/i/j = _(rs,j + rv,j)if,j + Emax,j|iL,j

which implies that

E. .
: .2 . max,j
VV]'S_T‘S,]'I’L,]" V|lL’j| = o
v.Jj
E .
The solution is uniformly ultimately bounded. Thus, if initially i}, ;(0) < -, then it holds that
v,J
i, ;(t) < ) V>0
~. o

The proof is complete. u
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Conclusions

The controller proposed can achieve the following:
v Load power sharing among BESS
v’ Voltage regulation near reference

v Input/interconnection current limitation without knowledge of the system parameters and additional

protection circuits such as limiters and/or saturators.
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