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Context: discrete-time linear switched systems

Linear switched systems:

xk+1 = Aσ(k)xk , xk ∈ Rn

the map σ : N→ {1, . . . ,m} is the switching signal
Aσ takes values on a set of matricesM = {A1, . . . ,Am} ⊂ Mn(R).
Ai are also called modes

Typical problems concern stability/stabilization of switched systems.
Let

ρ(A) = max{|λ1(A)|, . . . , |λn(A)|} ← spectral radius of A

It is well-known that switching among stable matrices, i.e. ρ(Ai ) < 1, ∀i ,
may produce an unstable behavior.

Similarly, it may be possible to stabilize the system from a given initial
state by switching among unstable modes.
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“Measures” of the stability properties

ρ(A)→ “worst” exponential rate of the linear dynamics xk+1 = Axk

For a linear switched system the worst exponential rate is given by the
joint spectral radius (Rota & Strang, 1960)

ρ(M) = lim
k→∞

sup
M∈Mk

‖M‖1/k = lim sup
k→∞

sup
M∈Mk

ρ(M)1/k

whereMk = products of k matrices inM. The joint spectral radius has
applications in several fields (e.g. it is related to the class of regularity of
wavelets)

Computation of ρ(M) is NP-hard and the question ρ(M) ≤ 1 is
undecidable (no algorithm to determine it). However in most of the cases
known algorithms allow to compute it efficiently (even exactly)
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Measures of stabilizability

A first measure of the stabilizability of the system is given by the joint
spectral subradius (Gurvits, 1995):

ρ̌(M) = lim
k→∞

inf
M∈Mk

‖M‖1/k = lim
k→∞

inf
M∈Mk

ρ(M)1/k

The joint spectral subradius measures the smallest growth of the system
without reference to x0.

Similarly to the joint spectral radius, there exist formal negative results
about the computation of the joint spectral subradius.
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Stabilizability radius

Joint spectral subradius measures the smallest growth of the system
without reference to x0

Assume that we may chose the switching signal depending on x0 ∈ Rn:

ρ̃x0(M) = inf

{
λ > 0 | ∃C > 0,∃x(·) traj. of the switched sys.

s.t. |xk | ≤ Cλk |x0| ∀k ≥ 0

}
stabilizability radius
(Jungers - M. 2017)

→ ρ̃(M) = sup
x0
ρ̃x0(M)
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Properties of the stabilizability radius ∗

It can be proved that the constant C in the def. of ρ̃x0(M) can be
assumed independent of x0:

ρ̃(M) = inf

{
λ > 0 | ∃C > 0, s.t. |xk | ≤ Cλk |x0| ∀x0, ∀k ≥ 0

for some switching law depending on x0

}
Furthermore

ρ̃(M) < 1 ⇐⇒ ∀x0 there exists a switching law s.t xk → 0
⇐⇒ ∃σ(x) s.t. xk → 0 where xk+1 = Aσ(xk )xk

⇐⇒ ∃V control-Lyapunov function

Other properties:
ρ̃(γM) = γρ̃(M) and ρ̃(Mk) = ρ̃(M)k .

the problem ρ̃(M) < 1 is undecidable

∗Jungers & M. 2017. See also Sun & Ge 2011 for similar results
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Exemple (based on Stanford & Urbano, 1994)

DefineM = {A1,A2} as

A1 =

(
cos π4 sin π

4
− sin π

4 cos π4

)
=

1√
2

(
1 1
−1 1

)
A2 =

(1
2 0
0 2

)
Both A1,A2 preserve the area and it is easy to see that ρ̌(M) = 1.

To stabilize the system from a point x0 rotate with A1 at most 3 times
until the angle with the x-axis ≤ π

8 and then apply A2 ⇒ the induced norm
contraction gives the bound ρ̃(M) ≤ (34−15

√
2

16 )1/8 < 0.9724
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Exemple (Stanford & Urbano, 1994)

Stabilizing feedback with A1 = 1√
2

(
1 1
−1 1

)
, A2 =

(1
2 0
0 2

)
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Exemple (Stanford & Urbano, 1994)

Given an integer k > 1 the value maxx0∈S1 min( |xk ||x0|)
1
k computed with the

previous feedback is an upper bound for ρ̃(M). For k = 30 this gives
ρ̃(M) ≤ 0.87.
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Numerical approximation of ρ̃(M)

ρ̃(γM) = γρ̃(M)⇒ in order to approximate ρ̃(M) one may use
algorithms to check stabilizability, e.g.:

- Lyapunov-Metzler inequalities (Geromel & Colaneri 2006)

- Existence of piecewise quadratic control-Lyapunov functions and
asymptotically tight algorithm for stabilizability
(Zhang, Abate, Hu & Vitus, 2009)

- “Invariance” conditions and related results/stabilization algorithms
(Fiacchini & Jungers 2014, Fiacchini, Girard & Jungers 2016):

∃Ω ⊂ Rn s.t. Ω ⊂ int(∪M∈∪i≤kMiM−1Ω)

The previous methods provide upper bounds for ρ̃(M), but the rate of
convergence to the true value is unclear
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A simple lower bound for ρ̃(M)

Let 0 ≤ s1(A) ≤ s2(A) ≤ · · · ≤ sn(A) = ‖A‖ denote the singular values of
A ∈ Mn(R), that is

si (A) =
√
λi (ATA)

(si (A)= lengths of semiaxes of the ellipsoid A·B1(0) with B1(0) unit ball)

Theorem 1 (Jungers & M. 2017)

ρ̃(M) ≥ ρ̃1(M) , min
i=1,...,m

s1(Ai )

Example:
ρ̃

({√
2
2

(
1 1
−1 1

)
,

(1
2 0
0 2

)})
≥ 1

2

For this example using ρ̃(M) = ρ̃(Mk)1/k ≥ (minA∈Mk s1(A))1/k = 1
2

does not improve the bound
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Second lower bound for ρ̃(M)

From now on we assume that the matrices Ai are invertible

Theorem 2 (Dettmann, Jungers & M. 2020)

The stabilizability radius satisfies

ρ̃(M) ≥ ρ̃2(M) ,
( m∑

k=1

| detAk |−1
)−1/n

Example:
ρ̃

({√
2
2

(
1 1
−1 1

)
,

(1
2 0
0 2

)})
≥ 2−1/2 ≈ 0.707

→ provide significant improvement compared to Theorem 1

Thm 2 not always better than Thm 1: ifM = {two rotation matrices}
then Thm 1 returns a lower bound 1, while Thm 2 returns

√
2/2
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Sketch of the proof

Given A ∈ Mn(R) define Sr ,A = {x ∈ Sn−1 | ‖Ax‖ ≤ r}. It is empty if
r < s1(A). Otherwise one can show the following bound of its measure

m(Sr ,A) ≤ m(Sn−1) min{rn| det(A)|−1, 1} (1)

If ρ > ρ̃(M) and we set r = ρk then Sn−1 must be covered by the union of
such sets for A ∈Mk for k →∞, so that

m(Sn−1) ≤
∑

A∈Mk

m(Sρk ,A). (2)

Determinants are multiplicative ⇒

∑
A∈Mk

| det(A)|−1 =
∑

σ∈{1,...,m}k

∏
i=1,...,k

| det(Aσi )|
−1 =

( m∑
h=1

| det(Ah)|−1
)k
(3)

From (1), (2) and (3) one gets the stated bound. 2
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Improved lower bound

Let
Σm = {ν ∈ [0, 1]m |

m∑
i=1

νi = 1}, ν̄ ∈ Σm s.t. ν̄h =
| detAh|−1∑m
i=1 | detAi |−1

Ψ(ν) =
m∑
i=1

νi log
(νi | detAi |

s1(Ai )n
)
, Z = {ν ∈ Σm |Ψ(ν) = 0}

Set ρ̃3(M) , minν∈Z
∏m

i=1 s1(Ai )
νi . Also, recall ρ̃1(M) , mini=1,...,m s1(Ai ) from

Thm 1 and ρ̃2(M) ,
(∑m

i=1 | detAi |−1)−1/n from Thm 2.

Theorem 3 (Dettmann, Jungers & M. 2020)

We have the following alternative:

(a) If Ψ(ν̄) ≥ 0, then ρ̃(M) ≥ ρ̃2(M) ≥ ρ̃1(M)

(b) If Ψ(ν̄) < 0, then Z is nonempty and we have ρ̃(M) ≥ ρ̃3(M) ≥ ρ̃1(M) and
ρ̃3(M) > ρ̃2(M).

P. Mason (CNRS / L2S) 15 / 26



Computation of ρ̃3(M)

Recall ρ̃3(M) = minν∈Z
∏m

i=1 s1(Ai )
νi , ρ̃1(M) = mink=1,...,m s1(Ak) and

Ψ(ν) =
∑m

i=1 νi log
(νi | detAi |

s1(Ai )n

)
. Let

S , {k ∈ {1, . . . ,m} | s1(Ak) = ρ̃1(M)}

Theorem 4 (M. 2022)

Assume we are in case (b) of Thm 2. If s1(A1) = · · · = s1(Am) = ρ̃1(M) or if∑
i∈S | detAi |−1 ≥ ρ̃1(M)−n then ρ̃3(M) = ρ̃1(M).

Otherwise, the min in ρ̃3(M) is attained at

ν̂k(β) =
s1(Ak)β | detAk |−1∑m
h=1 s1(Ah)β | detAh|−1

for some real value β. In this case ρ̃3(M) > ρ̃1(M) and ρ̃3(M) may be
calculated numerically by solving the equations Ψ(ν̂1(β), . . . , ν̂m(β)) = 0 and
substituting the corresponding solution(s) in ρ̃3(M).
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Example

LetM = {A1,A2} with

A1 =

(
cos θ sin θ
− sin θ cos θ

)
, A2 =

(
c 0
0 c−1

)
, with c ∈ (0, 1), θ ∈ [0, 2π].

We have s1(A1) = 1, s2(A2) = c , det(A1) = det(A2) = 1, ν̄1 = ν̄2 = 1
2 and

Ψ(ν̄) = log 1
2 − log c .

Hence for c ≤ 1
2 we are in case (a) with lower bound ρ̃2(M) =

√
2

2 .

For c > 1
2 we are in case (b), the lower bound is ρ̃3(M) = c1−ν where ν solves

ν
ν

ν−1 (ν − 1) = c2

c 0.1 0.3 0.5 0.7 0.9
ρ̃1(M) 0.1 0.3 0.5 0.7 0.9
ρ̃2(M) 0.7071 0.7071 0.7071 0.7071 0.7071
ρ̃3(M) - - 0.7071 0.7613 0.9048
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What about regularity of x0 7→ ρ̃x0 ?

Theorem 5 (Dettmann, Jungers & M. 2020)

Let n = 2 and assume that there exists A ∈ ∪k∈NMk with nonreal
eigenvalues and no power proportional to the identity, and that
mini=1,...,m s1(Ai ) is only attained at a symmetric matrix not proportional
to the identity. Then x 7→ ρ̃x(M) is discontinuous everywhere in R2.

Idea of proof: A is a generalized irrational rotation, so its trajectories are
dense (in angle) in positive and negative time. The symmetric matrix
possesses an eigenvector with eigenvalue mini=1,...,m s1(Ai ). This
eigenvector can be reached from a dense subset in which
ρ̃x(M) = mini=1,...,m s1(Ai ). From Theorem 4 there exists a point s.t.
ρ̃x(M) > mini=1,...,m s1(Ai ) and the same holds true along its dense orbit.
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Examples

“Stanford-Urbano” example satisfies the conditions of Theorem 5 with
generalized irrational rotation A = A1A2

Consider the set of matricesM = {A1,A2,A3} where

A1 =

(
−2 3
−6 4

)
, A2 =

(
−0.8 0
0 2

)
, A3 =

(
2 −1
−2 −2

)
.

The assumptions of Theorem 5 are satisfied since A1 is a generalized
irrational rotation, while the minimum singular value is equal to 0.8 and is
attained by A2. Theorems 2-4 give the lower bounds ρ̃2(M) = 1.059 and
ρ̃3(M) = 1.0675 for ρ̃(M).
Thus the system is stabilizable (exponentially) from a dense set of initial
conditions and not stabilizable from another dense set.
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Stabilization by periodic laws

Recall the joint spectral subradius

ρ̌(M) = lim
k→∞

inf
M∈Mk

‖M‖1/k = lim
k→∞

inf
M∈Mk

ρ(M)1/k

The result below describes the relation between ρ̌(M) and the existence of
periodic stabilizing switching laws.

Theorem (M. 2022)

The following conditions are equivalent.
1 ρ̌(M) < 1;
2 there exists a periodic switching law σ : N→ {1, . . . ,m} s.t.

limk→∞
∏k

i=0 Aσ(i) = 0.

If, instead, ρ̌(M) ≥ 1 then, for a.e. x ∈ Rn, there exists no periodic
switching law σx : N→ {1, . . . ,m} s.t. limk→∞

∏k
i=0 Aσx (i)x = 0, i.e. the

system is not stabilizable from x with a periodic switching law.
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Sketch of the proof

The equivalence

ρ̌(M) < 1 ⇐⇒ ∃σ(·) periodic s.t. lim
k→∞

k∏
i=0

Aσ(i) = 0

follows easily from the definitions.

Assume now ρ̌(M) ≥ 1. It follows easily that ρ(Ai1 · · ·Aik ) ≥ 1 for every
matrix product Ai1 · · ·Aik ∈Mk , for every k .
⇒ Ai1 · · ·Aik has a stable subspace V ( Rn

⇒ · · ·AikAi1 · · ·Aikx0 → 0 ⇐⇒ x0 ∈ V
Since ∪kMk is countable we deduce that there exists a periodic stabilizing
σ from x0 only if x0 belongs to a countable union ∪`∈NV` with m(V`) = 0.
Hence m(∪`∈NV`) = 0 concluding the proof.
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Further remarks about periodic stabilization

As a consequence of the previous result:

Remark
If ρ̃(M) < 1 ≤ ρ̌(M) then for every initial condition x0 there exists a
stabilizing switching law but, for a.e. x0, such a switching law cannot be
taken periodic.

This is not a pathological phenomenon. For instance if one takes

M =

{
1
α

(
cos π4 sin π

4
− sin π

4 cos π4

)
,
1
β

(1
2 0
0 2

)}
with α, β ∈ [0.9725, 1], then ρ̃(M) < 1 ≤ ρ̌(M).
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ρ̃(M) < ρ̌(M)?

Partly motivated by the previous remark we would like to characterise the
setsM s.t. ρ̃(M) < ρ̌(M). This problem appears to be highly nontrivial.
In dimension n = 2 we have the following.

Theorem (M. 2022)

Assume that n = 2 and that there exists a coordinate transformation T
such that

M′ = TMT−1 = {TMT−1 | M ∈M}

satisfies
(a) ∃A1 ∈M′ with A1 = αRϕ, where α 6= 0 and Rϕ is a rotation of an

angle ϕ irrational with π;
(b) | det(A1)| = α2 = minA∈M′ | det(A)|;
(c) ∃A2 ∈M′ with real eigenvalues s.t. s1(A2) < s1(A1) = |α|.
Then ρ̃(M) < ρ̌(M) = |α|.
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ρ̃(M) < ρ̌(M)?

It is easier to study the analogous property for continuous-time systems.
Consider the continuous-time switched system

ẋ(t) = Bσ(t)x(t), Bσ ∈ {B1, . . . ,Bm} ⊂ Mn(R) (4)

The following result applies to discrete-time approximations of (4).

Theorem (M. 2022)

Assume that (4) is controllable in the projective space in finite time, i.e.
∃T0 > 0 s.t. ∀x0 ∈ Rn \ {0} and ∀x1 ∈ Rn \ {0} there exists a trajectory
x(·) of (4) satisfying x(0) = x0 and x(T ) = αx1 for some T ∈ [0,T0] and
α ∈ R. Assume moreover that one of the matrices B1, . . . ,Bm possesses an
eigenvalue of real part r satisfying r < 1

n mini=1,...,m trace(Bi )
a.Then for

any δ > 0 small, settingM = {eδB1 , . . . , eδBm} we have ρ̃(M) < ρ̌(M).
averified unless the Bi with the eig. of min. real part is s.t. Re(λj(Bi )) = r ∀j
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Questions/Perspectives

What is x0 7→ ρ̃x0(M) for Stanford-Urbano example?
Does it take a finite/discrete/continuous set of values?
The bound of Theorems 3-4 may be improved by common linear
transformation or by applying toMk using ρ̃(Mk) = ρ̃(M)k .
Does the lower bound for ρ̃(Mk)1/k converges to ρ̃(M)?
Generalisation of Thm 5: is the “dense discontinuity property” generic?
What about continuous-time systems? For instance orbits are full-rank
under generic conditions so Theorem 5 has probably no
continuous-time counterpart
How to better characterise the property ρ̃(M) < ρ̌(M).
Is it generically satisfied for finite sets of matricesM⊂ Mn(R)?
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Thank you for your attention!
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