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Overview

This seminar aims at highlighting new connections - in terms of stability analysis and

convergence proof - underlying the design of the Repetitive Learning Control with respect

to well established techniques such Adaptive Control, Adaptive Learning and Regulator

Control design.



The problem of unstructured uncertainties

Asymptotic tracking for nonlinear systems might be guaranteed when unstructured (time-
invariant) uncertainties appear.

The price to be paid is, however, the adoption of learning control strategies that restrict
the output reference signals to be periodic with known periodicity.

In this context, the key idea relies on the use of functional approximations to reproduce

the uncertain periodic input reference (adaptive learning) or on the voluntary introduction

of delays in the control action to improve performance trial by trial (repetitive learning).



RLC (1)

Let us start from the output tracking problem in which the output y of the nonlinear time-
invariant single input-single output system (f(·) and g(·) are suitable uncertain smooth
vector fields on Rn, while h(·) : Rn → R is a suitable uncertain smooth function)

ẋ = f(x) + g(x)u
y = h(x) (1)

is required to track a smooth periodic reference signal y∗(t) (with known period T ):

y∗(t+ T ) = y∗(t), ∀ t ≥ −T. (2)

In particular, we assume that the global relative degree ρ ≤ n is known and well defined
for (1) and that system (1) is globally input-output linearizable so that we may directly
consider its normal form

ż = φ(z, ξ)
ξ̇j = ξj+1, j = 1, . . . , ρ− 1 (3)

ξ̇ρ = Lρfh(x) + LgL
ρ−1
f h(x)u

.
= q(z, ξ) + b(z, ξ)u

y = ξ1

in which z = [z1, · · · , zn−ρ]T, ξ = [ξ1, · · · , ξρ]T are the new vector coordinates, with ξ
being available for feedback.



The inverse system dynamics is assumed to constitute a globally exponentially convergent
system with the uniformly bounded steady-state property for the class of inputs P̄C(·).
For linear inverse system dynamics ż = Γz+ Θξ, condition i) is always satisfied when Γ
is Hurwitz.

For such a class of systems, the straightforward generalization of the PIDρ−1 control
(c(ρ) = 0 if ρ = 1, c(ρ) = 1 if ρ > 1):

u(t) = −kρ

[
c(ρ)

ρ−1∑
i=1

kiỹ
(i−1)(t) + ỹ(ρ−1)(t)

]
+ û∗(t)

û∗(t) = satMu
(û∗(t− T ))

−µϕ(t)

[
c(ρ)

ρ−1∑
i=1

kiỹ
(i−1)(t) + ỹ(ρ−1)(t)

]
û∗(t) = 0, ∀ t ≤ 0 (4)

solves (for any initial condition with a properly dependent choice of the constant user-

defined control gains ki, 1 ≤ i ≤ ρ) the output tracking problem.



RLC (2)

Now consider the system:

ẋ =


0 1 0 · · · 0
0 0 1 · · · 0
... ... ... . . . ...
0 0 0 · · · 1
0 0 0 · · · 0

x+ χ(y) +


b1

b2
...
bn

 v
.

= Acx+ χ(y) +Bcv (5)
y = [1,0, · · · ,0]x+ dv

.
= Ccx+ dv

is considered, where: x ∈ Rn is the state vector, y ∈ R is the output to be controlled,
v ∈ R is the control input; χ(·) is an unknown globally Lipschitz smooth vector-valued
function with Lipschitz constant Lχ; d is the positive high frequency gain when ρ = 0,
whereas b1 is the positive high frequency gain when ρ = 1; b1, . . ., bn ∈ R+ are unknown
positive reals such that the n roots of the polynomial

p(s) = dsn + b1s
n−1 + . . .+ bn

all belong to C−. Two cases are considered: i) d > 0, i.e., the relative degree ρ is equal
to zero; ii) d = 0 & b1 > 0, i.e., the relative degree ρ is equal to one.



In order to account in (1) for possible model dimension reductions that aim at neglecting
fast nonlinear dynamics for the actuator variable v, we allow v to take the form

v = u+ ϕ(y),

where u becomes the input to be designed and ϕ(·) is assumed to be an unknown (glob-
ally Lipschitz) monotonic smooth real-valued function with non-positive derivative over its
entire domain R
Theorem 1: Consider system (1) with ρ = 0 or ρ = 1. Set v = u + ϕ(y). Let y∗ be as
in Definition 1. Let u∗ denote the existing T -periodic unknown reference input for system
(1) that guarantees, for compatible initial conditions, perfect output tracking y(t) ≡ y∗(t),
for any t ≥ −T . Let: µ, ky,Mu be positive control parameters, with Mu ≥ |u∗(t)| for any
t ∈ [0, T ); φT(·) : R+ ∪ {0} → [0,1] be a continuous increasing function for t ∈ [0, T ]
such that φT(0) = 0 and φT(t) = 1 for any t ≥ T . Then there exists a positive real ky∗
such that, for ky > ky∗, the control (t ≥ 0):

u(t) = −kyỹ(t) + û∗(t)
û∗(t) = satMu

(û∗(t− T ))− µφT(t)ỹ(t) (6)
û∗(q) = 0, ∀ q ∈ [−T,0)

i) is a repetitive learning control when ρ = 1; ii) is an exponential repetitive learning control
when ρ = 0, while also guaranteeing the asymptotic input tracking: limt→+∞ [u(t)− u∗(t)] =
0 exponentially.



What about AC?

The above control constitutes a straightforward generalization of the Proportional-Integral
(PI) control that solves the problem when the output reference signal y∗ and the input
reference u∗ are constant.

This can be viewed by neglecting the saturation action, setting µ = kIT and taking the
limit for T → 0 (if it exists).

In the same way, the arguments used in the first part of the proof of Theorem 1 show the
effectiveness of the PI control (excepting for the additional use of PE-based arguments),
once the µ-dependent integral quadratic term in V (t) (µ = kIT ):

1

µ

∫ t

t−T
(satMu

(û∗(τ))− u∗(τ))2dτ

is replaced by the quadratic term k−1
I ũ2

∗ .



Different points of view

The RC approach – first proposed at the end of the 1980s – uses a delay as a universal
periodic signal generator to achieve asymptotic regulation of the desired output.

When such a delay is viewed as a part of an estimation scheme that is able to provide the
estimate û∗(t) of the unknown periodic input reference u∗(t) (while generalizing the clas-
sical integral action for constant disturbance remotion), the RC is named RLC to highlight
the fact that the controller actually possesses a learning estimation scheme inside.

On the other hand, RLC differs from the so called ILC since in the ILC, the initial conditions

of the system are typically set to take the same value at each repetition, while in the RLC,

the initial conditions of the system on each trial are set to be equal to the final conditions

of the previous repetition.



Different points of view (2)

RLC differs also from ALC, since the latter does not generally achieve convergence to
zero of the output tracking error. The output tracking error, in fact, is only guaranteed to
be exponentially attracted into a residual connected compact set (containing the origin)
whose diameter: i) is zero just in the case of finite Fourier series expansion for the in-
put reference (and any sufficiently high dynamic order of the controller); ii) can be made
arbitrarily small by increasing the number N of the estimated Fourier coefficients in the
Fourier series expansion for the input reference.

In particular, by properly setting the control gains, the guaranteed output tracking error

may be reduced as the Fourier coefficients number is increased, with L2[0, T ] and L∞
transient performance being additionally achieved during the learning phase owing to the

use of projection algorithms.



Different points of view (3)
Indeed, the lack of convergence to zero relies on the fact that the ALC strategy represents
the input reference, namely a class Cpy periodic function Θ(t) with known period T (py is
any sufficiently large positive integer, BΘ ≥ |Θ(·)|), as

Θ(t) =
N−1∑
l=0

%lϕl(t) + ε(t),

where: %[N ] = [%0, . . . , %N−1]T ∈ RN is the vector of the first N Fourier coefficients for
Θ(t) (N > 1 is an odd number) satisfying

N−1∑
l=0

%2
l ≡ ‖%[N ]‖2 ≤

1

T

∫ T

0
Θ2(τ)dτ ≤ B2

Θ;

the involved basis functions are given by (l = 1,2, . . ., 2 ≤ p ≤ py, γl = l2π/T ):

ϕ0(t) = 1, ϕ2l(t) =
√

2 cos(γlt), ϕ2l−1(t) =
√

2 sin(γlt);

|ε(t)| ≤ εN , with the time-independent truncation error* εN decreasing to zero as N
increases.
*The Fourier series approximation step can be viewed as the mirrored counterpart of the finite memory
implementations in the RLC, based on Padé approximants and piecewise linear approximation theory.



Different points of view (4)
Now, the ALC can be viewed as a regulator reformulation that is robust with respect to the
approximation error, under a PE condition always verified due to the orthogonal nature of
the basis functions. Each sinusoidal contribution to the regulator of the form ŵ1 satisfying:

˙̂w1 = ŵ2 − βỹ
˙̂w2 = −γ2ŵ1

can be rewritten as Â1 cos(γt) + Â2 sin(γt) under the dynamical equations:

˙̂A1 = −β cos(γt)ỹ, Â1(0) = ŵ1(0)
˙̂A2 = −β sin(γt)ỹ, Â2(0) = γ−1ŵ1(0),

whereas each estimation term of the form ŵ1 satisfying:

˙̂w1 = ŵ2

˙̂w2 = −βỹ − γ2ŵ1

can be rewritten as Â1 cos(γt) + Â2 sin(γt) under the dynamical equations:

˙̂A1 = βγ−1 sin(γt)ỹ, Â1(0) = ŵ1(0)
˙̂A2 = −βγ−1 cos(γt)ỹ, Â2(0) = γ−1ŵ1(0).



Exp convergence properties/dynamic structure and ALC (Extended
Matching)

Consider the class of single input-single output nonlinear systems

ẋi = xi+1, 1 ≤ i ≤ n− 1 (for n ≥ 2)
θẋn = f(x) + u (7)
πu̇ = q(x, u) + v = q(ξ) + v

y = h(x)

in which: x = [x1, . . . , xn]T ∈ Rn; u ∈ R; ξ = [xT , u]T , v ∈ R; y ∈ R; h is a known
smooth function; θ and π - here additionally considered with respect to [Marino, Tomei,
Verrelli, 2012] - are uncertain constant parameters [of known sign - positive without loss
of generality -]; f and q are uncertain smooth functions.

The problem is the one of designing a state [(x, u)] feedback control v in order:
to track (even without a well-defined global relative degree) a reference signal y∗(t) for
the output y(t) which is a smooth periodic function of known period T .



The variable u in may be considered as the control variable for the x-subsystem whose
uncertain dynamics (forced by the input v) are taken into account: systems with uncertain
actuator dynamics comply with this interpretation.

Motivating example: Permanent Magnet Step Motors

dθ(t)

dt
= ω(t)

h(θ(t))
dω(t)

dt
= − [α(θ(t)) + β(θ(t))ω(t)] + iq(t) + c(θ(t))id(t)

diq(t)

dt
= −

[
R

L0
iq(t) +

ω(t)

L0
ηq(θ(t))

]
−Nrid(t)ω(t) +

1

L0
uq(t)

did(t)

dt
= −

[
R

L0
id(t) +

ω(t)

L0
ηd(θ(t))

]
+Nriq(t)ω(t) +

1

L0
ud(t)

in which the stator windings self inductance L0 and the number of rotor teeth Nr are the

only known parameters and



h(θ) =
J

ifNr

 n∑
j=1

jLmj cos[(1− j)Nrθ]

−1

α(θ) =
h(θ)

J

TL(θ) +
Nri2f

2

n∑
j=4

jLfj sin[jNrθ]


β(θ) =

Dh(θ)

J
, c(θ) =

h(θ)ifNr

J

n∑
j=2

jLmj sin[(1− j)Nrθ]

ηd(θ) = −ifNr

n∑
j=2

jLmj sin[(j − 1)Nrθ]

ηq(θ) = ifNr

n∑
j=1

jLmj cos[(j − 1)Nrθ]

are uncertain functions. Tracking for the rotor angle θ(t) of a smooth periodic reference

signal of known period is to be guaranteed (along with regulation of id(t) to zero).



Latest result: A single learning estimation scheme

It is enough to design an adaptive learning control that just includes a simple adaptive
learning estimation scheme in the upper subsystem (through the u-reference ur), with the
tracking error ũ = u− ur being deliberately allowed not to converge to zero.

Such ũ will in turn converge to a T∗-periodic steady-state solution, whose presence will

be compensated by the learning action of the upper-subsystem.



Application to the heart rate regulation (open) problem
The presented idea can be used with local modifications to provide an elegant solution to
the heart rate regulation problem for treadmill and cycle-ergometer exercises.

• The nonlinear dynamics of a human heart rate during long-duration treadmill exer-
cises have been found in [T.M. Cheng et al.] to be described by the experimentally
validated second order time-invariant system

ẋ1 = −a1x1 + a2x2 + a6u
2

ẋ2 = −a3x2 + a4fa5(x1) (8)

in which: the output x1 is proportional to the heart rate deviation from the heart rate at
rest; x2 is a lumped variable which takes into account slower local peripheral effects
on the heart rate response (represented by metabolism, hormones, body tempera-
ture and loss of body fluid); u is the treadmill speed. Here ai, i = 1,2, . . . ,6, are
positive parameters which depend on the specific individual performing the treadmill
exercise, while fa5(x1) is a globally Lipschitz nonlinear function of the state variable
x1 (with global Lipschitz constant kf,a5

). In particular, fa5(x1) is taken in [T.M. Cheng
et al.] as equal to the RHS of

fa5(x1) = x1

(
1 + e−(x1−a5)

)−1
.



• Model (2) is valid to even describe the dynamics of a human heart rate during cycle-
ergometer exercises (in which the cycling speed is kept constant in spite of a varying
work load): M. Paradiso, S. Pietrosanti, S. Scalzi, P. Tomei, and C.M. Verrelli, Ex-
perimental heart rate regulation in cycle-ergometer exercises, IEEE Transactions on
Biomedical Engineering, 60: 135-139, 2013. The modifications in interpreting model
(2) are the following: the output x1 is proportional to the heart rate deviation from
the heart rate corresponding to the cycling operation under zero work load; x2 is a
lumped variable which takes into account slower local peripheral effects on the heart
rate response occurring when passing from the operation at zero work load to the
operation at positive work load; u is the work load.



• The proposed approach complies with a scenario in which a simplified DC motor
model (ϑ is the rotor position, ω is the rotor speed, TL is the load torque, a, b, c, ā, b̄
are suitable constants)

ω̇ = av − bTL + cω (9)

in the case of negligible motor inductance or

ϑ̇ = āv − b̄TL(ϑ) (10)

in the case of negligible motor inductance and inertia constant is also considered.
Model (3) concerns the heart regulation problem for treadmill exercises, whereas
model (4) concerns the heart regulation problem for cycle-ergometer exercises. As-
sume, in fact, that there exists suitable functions fm, gm, hm such that u = fm(ω) in
treadmills or u = gm(w), w = hm(ϑ) in cycle-ergometers (w is the magnet position
characterizing the work load).



Heart rate and corresponding reference for subject 1.



Heart rate and corresponding reference for subject 2.








