Breaking indecision in multi-agent multi-option dynamics Seminar at the L2S, Paris

Alessio Franci

Montefiore Institute, University of Liege

June 21, 2023

Thank you

Joint work with

Marty Golubitsky Ohio State University Math Department

lan Stewart University of Warwick Math Department

FR

Naomi E. Leonard Princeton University MAE Department

Anastasia <u>Bizyaeva</u> Washington University Al Institute for Dynamic Systems

A Franci, M Golubitsky, I Stewart, A <u>Bizyaeva</u>, NE Leonard, Breaking indecision in multi-agent, multioption dynamics, To appear in SIAM J Applied Dynamical Systems

Thanks!

Indecision-breaking in nature, society, and technology

(Keynote)

- 1 Setting-up the mathematical framework
- Opinion formation as spontaneous synchrony breaking of symmetric influence networks
- 3 Bifurcations of symmetric opinion networks I: consensus and deadlock
- Ø Bifurcations of symmetric opinion networks II: dissensus
- 6 A general decision-making model and applications

Setting-up the mathematical framework

Influence networks

- We consider a set of $N_a \ge 2$ identical agents who form valued preferences about a set of $N_o \ge 2$ identical options.
- They do so through an **influence network**, whose connections describe mutual influences between valuations made by all agents.
- The network has $N_a \times N_o$ nodes (i, j), $i = 1, ..., N_a$, $j = 1, ..., N_o$, representing the evaluation of agent i about option j

Decision states and value patterns

- The value that agent i assigns to option j is represented by a real number z_{ij} which may be positive, negative or zero.
- A state of the influence network is a rectangular array of values $Z = (z_{ij})$ where $1 \le i \le N_a$ and $1 \le j \le N_o$.
- $z_{ij} \ge z_{kl}$ means that agent i values option j more than or equal to how agent k values option l.
- In the following, values are **color-coded** in the network representation.
- Nodes z_{ij} and z_{kl} of the array Z have the same color if and only if $z_{ij} = z_{kl}$. Nodes with the same value, hence same color, are **synchronous**.
- A decision state is graphically represented by a value pattern.

Decision states and value patterns

Decision states:

- A state where each row consists of equal values is a *deadlock* state. Agent *i* is **deadlocked** if row *i* consists of equal values.
- A state where each column consists of equal values is a **consensus** state. There is *consensus about option j* if column *j* consists of equal values.

Decision states and value patterns

Decision states:

- A state that is neither deadlock nor consensus is dissensus.
- A state that is both deadlock and consensus is a state of **indecision**. An indecision state is **fully synchronous**, that is, in such a state all values are equal.

Dissensus

Opinion formation as spontaneous synchrony breaking of symmetric influence networks

Opinion formation as symmetric synchrony breaking

We ask:

• How are value pattern formed from full indecision?

Opinion formation as symmetric synchrony breaking

We ask:

- How are value pattern formed from full indecision?
- We propose spontaneous synchrony breaking as a universal mechanism for valued opinion formation.

The value influence network

- 1 cell type (nodes are of the same kind)
- 4 arrow types
- All-to-all interconnection for all arrow types

- (A) intra-agent, inter-option ----
- (O) intra-option, inter-agent ——
- (E) inter-agent, inter-option -----
- internal (not shown)

Symmetries of the influence network

- The influence network \mathcal{N}_{mn} is symmetric: its **automorphism group**, the set of permutations of the set of nodes \mathcal{C} that preserve node and arrow types and incidence relations between nodes and arrows, is non-trivial.
- $\bullet\,$ It is straightforward to prove that \mathcal{N}_{mn} has symmetry group

$$\Gamma = \mathbf{S}_{N_{\mathrm{a}}} \times \mathbf{S}_{N_{\mathrm{o}}}$$

where S_{N_a} swaps rows (agents) and S_{N_o} swaps columns (options).

• More precisely, $\sigma \in \mathbf{S}_{N_{\mathrm{a}}}$ and $\tau \in \mathbf{S}_{N_{\mathrm{o}}}$ act on $\mathcal C$ by

$$(\sigma,\tau)(i,j) = (\sigma(i),\tau(j)).$$

State space and vector fields over influence networks

• A point in the state space (or phase space) \mathbb{P} is an $N_{\rm a} \times N_{\rm o}$ rectangular array of real numbers $z = (z_{ij})$.

• The action of Γ on points $z = (z_{ij}) \in \mathbb{P}$ is defined by

$$(\sigma, \tau)z = (z_{\sigma^{-1}(i)\tau^{-1}(j)}).$$

Let

 $oldsymbol{G}:\mathbb{P} o\mathbb{P}$

be a smooth map $G = (G_{ij})$ on \mathbb{P} , so that each component G_{ij} is smooth and real-valued.

• We assume that the value z_{ij} assigned by agent i to option j evolves according to the value dynamics

$$\dot{z}_{ij} = G_{ij}(z). \tag{1}$$

Network admissible vector field

- The map G for the influence network is assumed to be **admissible** [7, 13] for \mathcal{N}_{mn} , that is, it respects the network structure and its symmetries.
- E.g., if two nodes (k₁, l₁), (k₂, l₂) input a third one (i, j) through the same arrow type, then G_{ij}(z) depends identically on z_{k1l1} and z_{k2l2}.
 Meaning: the value of G_{ij}(z) does not change if z_{k1l1} and z_{k2l2} are swapped in the vector z.
- The components of the admissible map G in (1) satisfy

$$G_{ij}(z) = G(z_{ij}, \overline{z_{\mathsf{A}_{ij}}}, \overline{z_{\mathsf{O}_{ij}}}, \overline{z_{\mathsf{E}_{ij}}})$$

where the function G is independent of i, j and the notation $\overline{z_{A_{ij}}}$, $\overline{z_{O_{ij}}}$, and $\overline{z_{E_{ij}}}$ means that G is invariant under all permutations of the arguments appearing under each overbar.

• That is, each arrow type leads to identical interactions.

Symmetries of the admissible vector field

• It is straightforward to see that the admissible vector field is Γ -equivariant: Given $\gamma = (\sigma, \tau) \in \Gamma$, with $\sigma \in \mathbf{S}_{N_{a}}$ and $\tau \in \mathbf{S}_{N_{o}}$,

$$\begin{aligned} ((\sigma,\tau)\mathbf{G})_{ij}(z) &= G_{\sigma^{-1}(i)\tau^{-1}(j)}(z) \\ &= G(z_{\sigma^{-1}(i)\tau^{-1}(j)}, \overline{z}_{\mathsf{A}_{\sigma^{-1}(i)\tau^{-1}(j)}}, \overline{z}_{\mathsf{O}_{\sigma^{-1}(i)\tau^{-1}(j)}}, \overline{z}_{\mathsf{E}_{\sigma^{-1}(i)\tau^{-1}(j)}}) \\ &= G_{ij}((\sigma,\tau)z). \end{aligned}$$

- This is a well-known general result [1]: all admissible maps are equivariant (with respect to the network symmetries).
- The converse is not true [12]: not all equivariant maps are admissible. That is, **network structure** constraints dynamics more than symmetry.

Equivariant vs admissible maps

• Indeed [12, Theorem 3]:

Theorem

The equivariant maps for $\mathbf{S}_m \times \mathbf{S}_n$ are the same as the admissible maps for \mathcal{N}_{mn} if and only if (m,n) = (m,1), (1,n), (2,2), (2,3), (3,2).

• However (proof in a few minutes):

Theorem

The linear equivariant maps for $\mathbf{S}_m \times \mathbf{S}_n$ are the same as the linear admissible maps for \mathcal{N}_{mn} for all m, n.

Γ -irreducible representations

- A representation (linear subspace) $V \subset \mathbb{P}$ is Γ -irreducible if the only group-invariant subspaces of V are V itself and 0.
- $\bullet\,$ The four irreducible representation of $\Gamma\,$ on $\mathbb P$ are
 - $V_{\rm s}$ = all entries equal (fully synchronous subspace)
 - $V_{\rm c}$ = all rows identical with sum 0 (consensus subspace)
 - V_{dl} = all columns identical with sum 0 (*deadlock subspace*)
 - $V_{\rm d}$ = all rows and all columns have sum 0 (*dissensus subspace*)

with dimensions $1, (N_{\rm o}-1)(N_{\rm a}-1), N_{\rm o}-1, N_{\rm a}-1$, respectively.

• The kernels of these representations are Γ , $S_{N_a} \times 1$, $1 \times S_{N_o}$, 1, respectively. Since the kernels are unequal the representations are non-isomorphic and (by counting dimensions)

$$\mathbb{R}^{N_{\mathrm{a}}N_{\mathrm{o}}} = V_{\mathrm{s}} \oplus V_{\mathrm{c}} \oplus V_{\mathrm{dl}} \oplus V_{\mathrm{d}}.$$

is the isotopic decomposition of \mathbb{P} with respect to Γ .

Γ -irreducible representations

Proofs of linear equivariant of \mathcal{N}_{nm} = linear admissible of \mathcal{N}_{nm}

- Hence, the dimension of the space of linear equivariant of \mathcal{N}_{nm} is four because linear equivariant restricted to each irrep are multiple of the identity in that irrep.
- The dimension of the space of the linear admissible is also four because there are four types of arrows.
- Hence the two spaces coincides.

Consequences for opinion formation I

Consequences for opinion formation II

• Because the Jacobian J of any admissible vector field G is a linear admissible,

where the four eigenvalues $c_{\rm d}, c_{\rm c}, c_{\rm dl}, c_{\rm s}$ are expressed as

$$\begin{array}{lll} c_{\rm d} &=& \alpha-\beta-\gamma+\delta\\ c_{\rm c} &=& \alpha-\beta+(N_{\rm a}-1)(\gamma-\delta)\\ c_{\rm d1} &=& \alpha-\gamma+(N_{\rm o}-1)(\beta-\delta)\\ c_{\rm s} &=& \alpha+(N_{\rm o}-1)\beta+(N_{\rm a}-1)\gamma+(N_{\rm a}-1)(N_{\rm o}-1)\delta\,. \end{array}$$

with

$$\alpha = \frac{\partial G_{ij}}{\partial z_{ij}} \quad \text{(same-agent, same-option)}, \quad \beta = \frac{\partial G_{ij}}{\partial z_{il}} \quad \text{(same-agent, different-option)},$$
$$\gamma = \frac{\partial G_{ij}}{\partial z_{kj}} \quad \text{(different-agent, same-option)}, \quad \delta = \frac{\partial G_{ij}}{\partial z_{kl}} \quad \text{(different-agent, different-option)}.$$

• Thus, the four eigenvalues can be set independently by changing the network arrow weights $\alpha, \beta, \gamma, \delta$.

Consequences for opinion formation III

- When an eigenvalue is zero a bifurcation along the associated irreducible representation happens:
 - When $c_d = 0$, a dissensus bifurcation happens along V_d .
 - When $c_{\rm c}=0$, a consensus bifurcation happens along $V_{\rm c}.$
 - When $c_{\rm dl} = 0$, a deadlock bifurcation happens along $V_{\rm dl}$.
 - When $c_{\rm s} = 0$, a bifurcation happens along $V_{\rm s}$, which does not lead to value patterning (not studied further).
- Because the four eigenvalues can be set independently, any bifurcation can happen.

The parameterized opinion dynamics

• To study opinion formation as bifurcation, we introduce a **bifurcation parameter** $\lambda \in \mathbb{R}$ to define the parametrized dynamics

$$\begin{split} \dot{\boldsymbol{Z}} &= \boldsymbol{G}(\boldsymbol{Z}, \lambda) \\ G_{ij}(\boldsymbol{Z}, \lambda) &= G(z_{ij}, \overline{z_{\mathsf{A}_{ij}}}, \overline{z_{\mathsf{O}_{ij}}}, \overline{z_{\mathsf{E}_{ij}}}, \lambda) \,. \end{split}$$

• By admissibility, and hence symmetry, for all $\gamma \in \Gamma$ and all $\lambda \in \mathbb{R}$,

$$\gamma \boldsymbol{G}(\boldsymbol{Z},\lambda) = \boldsymbol{G}(\gamma \boldsymbol{Z},\lambda).$$

• Interpretations of λ : strength of agent interactions, attention, time or environmental pressure, urgency.

Bifurcations of symmetric opinion networks I: consensus and deadlock

Consensus and deadlock bifurcation

- Because the faithful actions of Γ on consensus and deadlock space are that of S_n and S_m respectively, the structure of consensus and deadlock bifurcations follow from well-known equivariant branching lemma [8] and are well-known.
- Consensus bifurcations are S_n -equivariant bifurcations.

Theorem

Suppose $c_c = 0$ for $\lambda = \lambda_c^*$. Generically, there is a branch of equilibria corresponding to the axial subgroup $\mathbf{1} \times (\mathbf{S}_k \times \mathbf{S}_{N_o-k})$ for all $1 \le k \le N_o - 1$. These solution branches are tangent to V_c at $\lambda = \lambda_c^*$, lie in the subspace $\operatorname{Fix}(\mathbf{S}_{N_a} \times \mathbf{1}) = V_c \oplus V_s$, and are consensus solutions.

• Deadlock bifurcations are S_m -equivariant bifurcations.

Theorem

Suppose $c_{dl} = 0$ for $\lambda = \lambda_{dl}^*$. Generically, there is a branch of equilibria corresponding to the axial subgroup $(\mathbf{S}_k \times \mathbf{S}_{N_a-k}) \times \mathbf{1}$ for $1 \leq k \leq N_a - 1$. These solution branches are tangent to V_{dl} at $\lambda = \lambda_{dl}^*$, lie in the subspace $\operatorname{Fix}(\mathbf{1} \times \mathbf{S}_n) = V_{dl} \oplus V_s$, and are deadlock solutions.

Simulation of consensus opinion formation

(a) Evolution of valuations by 4 agents on 6 options at consensus symmetry-breaking. Simulation of (10.1) with parameters (11.1).

(b) Final simulation pattern of valuations of 4 agents on 6 options at consensus symmetrybreaking. Option 6 is chosen.

Simulation of deadlock opinion formation

(a) Evolution of valuation by 4 agents on 6 options at deadlock symmetrybreaking. Simulation of (10.1) with parameters (11.2).

(b) Final simulated value pattern by 4 agents on 6 options at deadlock symmetry-breaking. Agent 2 values all the options positively. Other agents value all the options negatively.

Bifurcations of symmetric opinion networks II: dissensus

The synchrony-breaking branching lemma

- Because on dissensus space V_d the full symmetry group Γ acts faithfully and equivariant vector fields of Γ -symmetric networks are not the same as admissible vector field, the equivariant branching lemma cannot be applied to study dissensus opinion formation.
- Golubitsky and Stewart thus developed a network version of the equivariant branching lemma called the **Synchrony-breaking branching lemma** [7].
- Using this lemma, we were able to show the following.

Dissensus bifurcations

Theorem

Suppose $c_d = 0$ for $\lambda = \lambda_d^*$. Generically, there is a branch of equilibria tangent to V_s at $\lambda = \lambda_d^*$ made of dissensus solutions. Furthermore, modulo reordering columns or rows, only the following kinds of dissensus solutions can emerge at a dissensus bifurcation:

Simulation of dissensus opinion formation 1

(a) Evolution of 4 agents' valuations about 6 options at dissensus symmetry-breaking with parameter set (11.3).

(b) Final value pattern of 4 agents' valuations about 6 options at dissensus symmetrybreaking with parameter set (11.3). All agents are neutral about Options 1 and 3. Agent 1 prefers Option 5. Agent 2 prefers Option 2. Agent 3 prefers Option 6. Agent 4 prefers Option 4.

Simulation of dissensus opinion formation 2

(a) Evolution of 4 agents' valuations about 6 options at dissensus symmetry-breaking with parameter set (11.4).

(b) Final value pattern of 4 agents' valuations about 6 options at dissensus symmetrybreaking with parameter set (11.4). Agent 1 prefers Options 1,2,5. Agent 2 prefers Options 3,4,6. Agent 3 prefers Options 1,5,6. Agent 4 prefers Options 2,3,4.

A general decision-making model and applications

A general model of decision-making

• All the studied phenomena can computationally be studied and generalized in the model [2]

$$\dot{z}_{ij} = -d_i z_{ij} + S\left(u_i \sum_{kl} A_{ik}^{jl} z_{kl}\right) + b_i$$

- General interconnection topologies.
- Time-varying and feedback-controlled parameters.
- Rich behavior:
 - Opinion cascades and changes of mind [4, 6]
 - Tunable sensitivity to inputs
 - Tunable decision speed
 - Oscillations [3]
- Suitable for real-time embodied (robotics, neuromorphic) applications.

Applications

- Sensorimotor control for autonomous agents [10, 5]
- Political polarization [11]
- Bio-inspired control [9]
- Neuroscience (in progress)
- Neuromorphic Engineering (in progress)

A general decision-making model and applications

A little advertisement: Neuromorphic Engineering Lab @ULiège

- Fernando Antoneli and Ian Stewart. "Symmetry and synchrony in coupled cell networks 2: Group networks". In: International Journal of Bifurcation and Chaos 17.03 (2007), pp. 935–951.
- [2] Anastasia Bizyaeva, Alessio Franci, and Naomi Ehrich Leonard. "Nonlinear opinion dynamics with tunable sensitivity". In: IEEE Transactions on Automatic Control (2022).
- [3] Anastasia Bizyaeva, Alessio Franci, and Naomi Ehrich Leonard. "Sustained oscillations in multi-topic belief dynamics over signed networks". In: arXiv preprint arXiv:2210.00353 (2022).
- [4] Anastasia Bizyaeva et al. "Control of agreement and disagreement cascades with distributed inputs". In: 2021 60th IEEE Conference on Decision and Control (CDC). IEEE. 2021, pp. 4994–4999.
- [5] Charlotte Cathcart et al. "Opinion-Driven Robot Navigation: Human-Robot Corridor Passing". In: arXiv preprint arXiv:2210.01642 (2022).
- [6] Alessio Franci et al. "Analysis and control of agreement and disagreement opinion cascades". In: Swarm Intelligence 15.1-2 (2021), pp. 47-82.
- [7] Martin Golubitsky and Ian Stewart. Dynamics and bifurcation in networks. SIAM, 2023.
- [8] Martin Golubitsky, Ian Stewart, and David G Schaeffer. Singularities and Groups in Bifurcation Theory: Volume II. Vol. 69. Springer Science & Business Media, 2012.
- Rebecca Gray et al. "Multiagent decision-making dynamics inspired by honeybees". In: IEEE Transactions on Control of Network Systems 5.2 (2018), pp. 793–806.
- [10] Haimin Hu et al. "Emergent Coordination through Game-Induced Nonlinear Opinion Dynamics". In: arXiv preprint arXiv:2304.02687 (2023).
- [11] Naomi Ehrich Leonard et al. "The nonlinear feedback dynamics of asymmetric political polarization". In: Proceedings of the National Academy of Sciences 118.50 (2021), e2102149118.
- [12] Ian Stewart. "Balanced colorings and bifurcations in rivalry and opinion networks". In: International Journal of Bifurcation and Chaos 31.07 (2021), p. 2130019.
- [13] Ian Stewart, Martin Golubitsky, and Marcus Pivato. "Symmetry groupoids and patterns of synchrony in coupled cell networks". In: SIAM Journal on Applied Dynamical Systems 2.4 (2003), pp. 609–646.