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Stabilization of evolution systems

Introduction

The stabilization problem starts like any other control problem:

∂tz +A(z , u(t)) = 0,

Particularity: u(t) is a feedback control

u(t) = F(t, z(t, ·)).

Goal: for any initial condition the system is stable and

‖z(t, ·)‖X → 0
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Introduction

The stabilization problem starts like any other control problem:

∂tz +A(z , u(t)) = 0,

Particularity: u(t) is a feedback control

u(t) = F(t, z(t, ·)).

Goal: exponential stability

‖z(t, ·)‖X ≤ Ce−γt‖z(0, ·)‖X , ∀ t ∈ [0,+∞).
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Examples

The Saint-Venant equations

∂tA+∂x(AV ) = 0,

∂tV+∂x(
V 2

2
+ gL(A, x))− Sb(x)︸ ︷︷ ︸

slope

+ S(A,V , x)︸ ︷︷ ︸
friction

= 0.

(Boundary) feedback controls

v(t, 0) = G1(h(t, 0)), v(t, L) = G2(h(t, L))

Theorem (A.H., Shang 2019)

The system is (locally) exponentially stable for the H2 norm if

G ′1(0) ∈
(
−
g∂AG(A∗(0), 0)

V ∗(0)
,−

V ∗(0)

A∗(0)

)
,

G ′2(0) ∈ R \
[
−
g∂AG(A∗(L), L)

V ∗(L)
,−

V ∗(L)

A∗(L)

]
.
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Introduction

Stabilization: a very useful problem in practice

Always some perturbations in reality

Technologies’ complexity is increasing

Automation → stabilization
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Robustness and hyperbolic systems

Motivation

Consider the following control problem
∂ty1 + ∂xy1 = 0,

∂ty2 + ∂xy2 = 0,

y1(t, 0) = y2(t, 1) + u(t)

y2(t, 0) = y1(t, 1),

Question

How to find a feedback control u(t) ?

e.g. u(t) = −y2(t, 1)
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A control u(t) = f (y1(t, 1)) with f ∈ C 1(R) cannot work
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Robustness and hyperbolic systems

Motivation

The control problem becomes
∂ty1 + ∂xy1 = 0,

∂ty2 + ∂xy2 = 0,

∂t ŷ2 + ∂x ŷ2 = 0,

with boundary conditions

ŷ2(t, 0) = y1(t, 1)

y2(t, 0) = y1(t, 1)

y1(t, 0) = y2(t, 1)− ŷ2(t, 1).

Proposition

This system is exponentially stable for any decay rate.

... but there does not exist any diagonal quadratic Lyapunov function.
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Robustness and hyperbolic systems

Robustness, hyperbolic systems and diffusion

Let us look at the linearized system:

∂ty1 + (1 + ε)∂xy1 = 0,

∂ty2 + (1 + ε)∂xy2 = 0,

∂t ŷ2 + ∂x ŷ2 = 0,

with boundary conditions

y1(t, 0) = y2(t, 1)− ŷ2(t, 1)

y2(t, 0) = ŷ2(t, 0) = y1(t, 1).

Proposition (Bastin, Coron, A.H. 2022)

There exists arbitrarily small ε such that this system is unstable.

What happens if we add some viscosity?
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Robustness and hyperbolic systems

Robustness, hyperbolic systems and diffusion

Consider the following 3× 3 system

∂ty1 + (1 + ε)∂xy1−η∂2
xxy1 = 0,

∂ty2 + (1 + ε)∂xy2−η∂2
xxy2 = 0,

∂t ŷ2 + ∂x ŷ2 = 0,

with boundary conditions

y1(t, 0) = y2(t, 1)− ŷ2(t, 1)

y2(t, 0) = ŷ2(t, 0) = y1(t, 1).

∂xy1(t, 1) = ∂xy2(t, 1) = 0.

Theorem (Bastin, Coron, A.H., 2022)

For any δ > 0 there exists η abitrarily small and ε1 > 0 such that for any
ε ∈ (−ε, ε) the system is exponentially stable with a decay rate ln(2)− δ

Remark:

Loss of continuity: there is a bound ln(2) on the decay rate.
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Robustness and hyperbolic systems

Robustness, hyperbolic systems and diffusion
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An illustration on the linearized Saint-Venant system
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Robustness and hyperbolic systems

Robustness, hyperbolic systems and diffusion

Consider the following 2× 2 system

∂ty + (1 + ε)∂xy−η∂2
xxy = 0,

∂t ŷ + ∂x ŷ = 0,

with boundary conditions

y(t, 0) = ŷ(t, 0) = y1(t, 1)− ŷ(t, 1),

∂xy(t, 1) = 0.

Proposition

There exists arbitrarily small η and ε1 such that for any ε ∈ (−ε1, ε1) the
system is unstable.

→ Here, the addition of a small viscosity breaks the stability.
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Robustness and hyperbolic systems

Robustness, hyperbolic systems and diffusion

Robustness is not a given

The effect of the viscosity is not easy to predict: in some other cases
the viscosity does not improve the robustness and even breaks the
stability of the linearized system.

The usefulness of viscosity for the robustness of boundary output feedback
control of an unstable fluid flow system, preprint, 2023, (Bastin, Coron,
A.H.)
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Control of traffic flows

Traffic flow instabilities: jam

What happens when you have many cars on the road with same speed
and same spacing ?

After a while you might get traffic jam.

No apparent reason: no accident, no lane reduction, etc. the underlying
reason is mathematical.
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Control of traffic flows

Traffic flow instabilities: jam

After a while you might get traffic jam.

Mathematical underlying reason: when density of cars is large enough
steady-states are unstable.

Very interesting from a control perspective → how to restore
stability? How to go from a stop-and-go traffic to a uniform flow
traffic?

Which control on the system?

Can we stabilize the system using individual (autonomous) vehicles as
controls. i.e. pointwise controls ?
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Control of traffic flows

Traffic flow instabilities

Different scales

Microscopic scale

ẋ(t) = f (t, x(t), u(t)) (ODE )

Macroscopic scale

{
∂tρ+ ∂x(ρV (ρ)) = 0, (t > 0, x ∈ R),

ẏ(t) = min(u(t),V (ρ(t, y(t)+))),
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Control of traffic flows

A microscopic approach

Consider a single lane ring-road of N cars
ẋi = vi ,

v̇i = a
vi+1 − vi

(xi+1 − xi )2
+ b[V (xi+1 − xi )− vi ],

, 1 ≤ i ≤ N

V is an equilibrium velocity, (xi , vi )i∈{1,...,N} are the variables.

Our control {
ẋN+1 = vN+1

v̇N+1(t) = u(t),

Proposition (Cui, Seibold, Stern, Work, 2017)

Assume that b
2

+ a
d2 < V ′(d), there exists N1 > 0 such that if N > N1, the

uncontrolled system of N cars is unstable.

The steady-state can be unstable for certain densities of cars
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Control of traffic flows

A microscopic approach

A single vehicle can restore the stability

Theorem (A.H., Piccoli, Truong, 2021)

Let (v̄ , d) an admissible steady-state, if

u(t) = −k(vN+1 − v̄),

where k > 0, then the system is locally asymptotically stable.
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Control of traffic flows

Traffic and PDEs

At a macroscopic scale{
∂tρ+ ∂x(ρV (ρ)) = 0, (t > 0, x ∈ R),

ẏ(t) = min(u(t),V (ρ(t, y(t)+))),

ρ(t, y(t))(V (ρ(t, y(t)))− ẏ) ≤ α max
x∈[0,ρmax]

(xV (x)− ẏ x), α ∈ (0, 1).

ρ is the density of cars, V (ρ) the speed of traffic, y(t) is the location of the
autonomous vehicle.

Question

The first equation already has a unique entropic solution of class BV. Why do
we need the inequality?

Entropic solutions do not represent the physical solutions

In an entropy solution, the flow would not see the AV: no creation of
information at a single point =⇒ no macroscopic influence of a single
point.
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Control of traffic flows

Traffic and PDEs

At a macroscopic scale{
∂tρ+ ∂x(ρV (ρ)) = 0, (t > 0, x ∈ R),

ẏ(t) = min(u(t),V (ρ(t, y(t)+))),

ρ(t, y(t))(V (ρ(t, y(t)))− ẏ) ≤ α max
x∈[0,ρmax]

(xV (x)− ẏ x),

Question

The first equation already has a unique entropic solution of class BV. Why do
we need the inequality?

Entropic solutions do not represent the physical solutions

In an entropy solution, the flow would not see the AV: no creation of
information at a single point =⇒ no macroscopic influence of a single
point.

Precisely the reason why this control can work.

We need a new condition: the Delle-Monache Goatin flux condition.
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Control of traffic flows

Traffic and PDEs

At a macroscopic scale{
∂tρ+ ∂x(ρV (ρ)) = 0, (t > 0, x ∈ R),

ẏ(t) = min(u(t),V (ρ(t, y(t)+))),

ρ(t, y(t))(V (ρ(t, y(t)))− ẏ) ≤ α max
x∈[0,ρmax]

(xV (x)− ẏ x),

Theorem (Delle Monache Goatin ’14, Liard Piccoli ’18, Garavello Goatin Liard
Piccoli ’20)

There exists a unique solution y ∈W 1,1
loc (R+), u ∈ C 0(R+, L

1) of bounded TV,
entropic on (−∞, y(t)) and (y(t),+∞).

Unfortunately this system does not accurately represent stop-and-go waves.

Would this hold for a second-order system that does ?
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A macroscopic approach: traffic and PDEs

A more involved model: GARZ equations
∂tρ+ ∂x(ρV (ρ, ω)) = 0,

∂t(ρω) + ∂x(ρωV (ρ, ω)) = 0

ẏ = min(Vb,V (ρ, ω)).

with the Delle-Monache Goatin flux condition

ρ(t, y(t))(V (ρ(t, y(t)), ω(t, y(t))− ẏ) ≤ αmax
ρ,ω

(ρ(V (ρ, ω)− u(t)))

Theorem (A.H., Marcellini, Liard, Piccoli, preprint)

There exists a solution in BV (R; [0, ρmax]× [ωmin, ωmax])×W 1,1
loc (R+), which is

in addition entropic on (−∞, y(t)) and (y(t),+∞).
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Perspectives

Several open questions

Can we derive a feedback to stabilize the system?
(see Liard, Marx, Perrollaz, 2023)

If a feedback can be derived from this system, can it be translated in
the microscopic framework ?

The coefficient α represents the proportion of space left on the road
when the AV is blocking a lane. What happens in the limit α→ 0 ?
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CIRCLES project: a real-life application

In real-life roads several additional difficulties:

An open system, with ramps and exits

The model is far from being perfect (!)

Partial measurements, loss of signal, propagating errors, imperfect
actuation, etc.

We do not know the steady-state we want to reach

→ A challenge for the CIRCLES project
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CIRCLES Project

Objective: Using a few number of autonomous vehicles to stabilize the system
and reduce the overall energy consumption and CO2 emissions of the traffic.

Final goal: make it work in real life on a highway at peak hours.

Plan:

Realistic simulations and controls (2020)

4-cars experiment on the highway (2021)

100 cars with the final control sent on the highway and looping on a few
kilometers to represent ∼ 2% of the flow (2022).

The world’s largest autonomous cars experiment in dense traffic.
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CIRCLES Project

Experimental results:
(with AlAnqary, Bhadani, Denaro, Weightman, Xiang et al.)

A single AV stabilize the behavior of ∼15 cars behind it, even on the
highway.

Speed variance decrease of ∼ 50% over a wave.
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CIRCLES Project

Experimental results:
(with AlAnqary, Bhadani, Denaro, Weightman, Xiang et al.)

Oscillations naturally re-appear after 15-20 cars.
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Real life experiment

... this is only the beginning.
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Im

Re

<latexit sha1_base64="WzDq/pLiaJngbs3uEnJIinJrILc="></latexit>

⌘ = 0.01

" = 0.1

<latexit sha1_base64="YqoMOufEFPvdyBbyN62Rd9EeKsE="></latexit>

⌘ = 0.01

" = 0

<latexit sha1_base64="pG2SxFYfGomgQjgx4HCKVQ8LJ28=">AAAC5HicjVHLSsNAFD2N7/qKunRhsCiuSlJ8bYSCG5cKVgVTZBKndWiahMmkIOLSnTtx6w+41W8R/0D/wjvTCGoRnZDkzLn3nJl7b5BGIlOu+1qyhoZHRsfGJ8qTU9Mzs/bc/FGW5DLkjTCJEnkSsIxHIuYNJVTET1LJWTeI+HHQ2dXx4x6XmUjiQ3WZ8maXtWPREiFTRJ3ZS6s+V8zZcVzH98urfo9JnmYiSmLNVb0zu+JWXbOcQeAVoFJHf+0n9gt8nCNBiBxdcMRQhCMwZPScwoOLlLgmroiThISJc1yjTNqcsjhlMGI79G3T7rRgY9prz8yoQzololeS0sEKaRLKk4T1aY6J58ZZs795XxlPfbdL+geFV5dYhQti/9J9Zv5Xp2tRaGHb1CCoptQwurqwcMlNV/TNnS9VKXJIidP4nOKScGiUn312jCYzteveMhN/M5ma1fuwyM3xrm9JA/Z+jnMQHNWq3mZ142C9Uq8Vox7HIpaxRvPcQh172EeDvG/wiCc8Wy3r1rqz7vupVqnQLODbsh4+AAuEmbg=</latexit>

⌘ = 0

" = 0.1
V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ−, ω−)

V (ρ+, ω+)

Vb − 2ε

1. Robustness and hyperbolic systems 2. Control of traffic flows
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Introduction

For a year now, we have been hearing a lot about the progress of AI,
particularly in one field: IA for langage.
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Introduction

A turning point in 2017: the Transformer

An attention mechanism that allows it to focus on the important
part of a sentence.
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AI and maths

What maths can bring to artificial intelligence (AI) vs. what AI can bring
to maths ?

Can an AI learn mathematics in some sense ?

Two ways to see the question:

Can it guess the solution to a mathematical problem?

Can it prove a theorem and give the proof?
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AI and maths

Can an AI, that has no built-in math knowledge, guess the solution to a math
problem? Can it learn some mathematics by examples?

Yes, it seems.

Guess solutions to ODE (Charton, Lample, 2019)

Guess the controllability of a linearized system; guess a stabilizing
feedback; the spectral abscissa (Charton, A.H., Lample, 2020)

Many following works (equilibria in a graph, linear algebra, GCD,
sequences etc.)
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AI and maths

Two examples

Finding a Lyapunov function

Guessing a feedback law
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AI and maths

Train an AI to guess solutions to a mathematical problem

Approach:

Use a language model (Transformer) originally used to learn
languages.

See the problem as a translation problem between statement and
solution.

Understanding the rules hidden behind → understanding some
mathematics



Stabilization of evolution systems

AI and maths

AI and maths

Example: finding Lyapunov functions

ẋ(t) =


−6x4

1 (t)x5
2 (t)− 3x7

1 (t)x2
3 (t)

3x9
1 (t)− 6x2

1 (t)x5
2 (t)x2

3 (t)

−4x2
1 (t)x5

3 (t)

 → V (x) = x6
1 + 2(x6

2 + x4
3 )

An open question

Methods exist in several cases, in particular polynomial with polynomial
Lyapunov functions

Mathematicians often rely on intuition

A first neural network with higher accuracy than humans (Alfarano,
Charton, A.H., 2023)
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AI and maths

Résultats

Type n equations degree SOSTOOLS1 IA

polynomial 2-3 8 78% 99.3%
polynomial 3-6 12 16% 95.1%

Non-polynomial N/A N/A N/A 97.8%
polynomial (SOSTOOLS) 2-3 6 N/A 83.1%

Human accuracy: XX%

1méthode existante.
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AI and maths

Two examples

Stability of dynamical systems

Control theory
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Consider the system

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E ,

Ṁ = (1− ν)νEE − δMM,

Ḟ = ννEE
M

M + Ms
− δFF ,

Ṁs = u − δsMs ,

E(t) mosquitoes’ eggs, F (t) feconded females, M(t) males, Ms(t) sterilised
males. u flux of released sterile mosquitoes (control). We are looking for a
feedback control:

u = g(M + Ms ,F + Fs)
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

Ė = βEF

(
1− E

K

)
−
(
νE + δE

)
E ,

Ṁ = (1− ν)νEE − δMM,

Ḟ = ννEE
M

M + Ms
− δFF ,

Ṁs = u − δsMs ,

u = g(M + Ms ,F + Fs)

Question

For ε as small as we want, is it possible to find g such that the system is stable
and

lim
t→+∞

‖E(t),M(t),F (t)‖ = 0 et lim
t→+∞

‖Ms(t)‖ = ε,

An open question
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Principle of the approach (Agbo Bidi, Coron, A.H., Lichtlé, 2023)

1 Transform the equations with a well chosen numerical scheme

2 Train a model based on Reinforcement Learning (RL). The AI trains by
trials and errors and tries to maximize a well chosen objective.

3 Deduce the mathematical control, from the numerical control

4 Check that this is a solution to the problem.
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N.Lichtlé−−−−−→

u = f (M + Ms ,F + Fs)
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ureg(M + Ms ,F + Fs) =

{
uleft

reg (M + Ms ,F + Fs) if M + Ms < M∗,

uright
reg (M + Ms ,F + Fs) otherwise,

uleft
reg =


ε if I1(F + Fs ) > α2,

umax
(
α2 − I1

)
if I1 ∈ (α1, α2],

umax otherwise, and uright
reg =


ε if I2 > α2,

umax
(
α2 − I2

)
if I2 ∈ (α1, α2],

umax otherwise.

where I1(x) = log M∗

log(F+Fs ) and I2(x , y) = log(M+Ms )
log(F+Fs ) ,
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Final control

u(t) =

{
ε if log(M+Ms )

log(F+Fs ) > α2,

umax otherwise,

ε > 0
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Final control

u =

{
ε if log(M+Ms )

log(F+Fs ) > α2,

umax otherwise,

ε = 0

We can see a mathematical bifurcation with this “IA-augmented
intuition”.
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Final control
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umax otherwise,
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What maths can bring to artificial intelligence (AI) vs. what AI can bring
to maths ? Can an AI learn mathematics in some sense ?

Two ways to see the question:

Can it guess the solution to a mathematical problem?

Can it prove a theorem and give the proof?
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Can an AI prove a theorem and give a proof? By far the hardest question...

First approach: train a Transformer (GPT-f , Polu, Sutskever, 2020)

Question

Let a > 0 and b > 0, such that
ab = b − a, show that

a

b
+

b

a
− ab = 2

Proof
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Ai and maths

2018 - GPT - an autoregressive transformer.
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Question

Let a > 0 and b > 0, such that
ab = b − a, show that

a

b
+

b

a
− ab = 2

Preuve

Procedure: train it with examples: (exercices, proofs)

The hope is that, by showing it enough examples, the AI can learn to
reason, just by predicting the next step each time.



Stabilization of evolution systems

AI and maths

AI and maths

Question
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ab = b − a, show that

a

b
+

b

a
− ab = 2

Proof

Procedure: train it with examples: (exercices, proofs)

The hope is that, by showing it enough examples, the AI can learn to
reason, juste by predicting the next step each time.

enough = diversified enough and numerous enough

LeanLlama Glöckle et al. 2023 (Temperature-scaled large language models for Lean
proofstep prediction)
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Second approach: treat mathematics as a game (Lample, Lachaux, Lavril,
Martinet, Hayat, Ebner, Rodriguez, Lacroix, 2022)

.

Deepmind (2017)
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AI for maths

Main difficulties:

two-players game vs. alone against one goal.

In chess, when we play a move, there is still only
one game. In mathematics: one statement →
many statement

Hard in mathematics to know automatically in the
middle of a proof what is the probability to
succeed.

The number of possibilities is much, much larger
in mathematics

Much harder than chess
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In practice

Two transformers: Pθ which predicts a tactic, cθ which predicts the
probability of succeeding in proving a statement (goal, assumption, etc.).

A clever proof search that sees the proof as a tree and combine Pθ, cθ
and an expansion of the tree.

Selection

N(g,t2)=0

W(g,t2)=0.1
N(g,t1) =1

W(g,t1) =0.5
N(g,t0)=1
W(g,t0)=0.3

g g
N(g,t1)=2

W(g,t1)=0.5+(1×0.1)×0.4

vT(g)=(1×0.1)×0.4

Back-propagationExpansion
gg g

vT(g1)=0.4

N(g1,t0)=1

W(g1,t0)=0.4
N(g0,t0)=1

W(g0,t0)=1x0.1

vT(g0)=1×0.1

N(g0,t0)=0

W(g0,t0)=0

g0 g0 g1g1 g0 g1

vT(g4)=0.4

N(g4,t1)=0
W(g4,t1)=0

g4

g2 g4
g2

vT(g2)=1
vT(g3)=0.1

g2 g4g3g3 g4 g2 g4g3g2 g2

g5 g6 g7

An online training of Pθ et cθ depending on what has been successful.
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AI for maths

Results

Undergraduate level exercices...

...30 to 60% of mid / high school exercices up to olympiads level...

...and some exercices from the International Mathematical Olympiads.

Exercice

Show that for any n ∈ N, 7 does not divide 2n + 1.
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Exercice

Show that for any n ∈ N, 7 does not divide 2n + 1.



Stabilization of evolution systems

AI and maths

Conclusion

Two subjects:

Stabilization theory:

A dynamic subject using different areas of mathematics (mostly
analysis)

Very theoretical aspects close to real-life applications

AI for mathematics

A growing interest (launch of a group on automated reasoning by T.
Gowers in 2022; plenary talk of K. Buzzard at ICM; T. Tao
formalizing his last papers in Lean4, etc.)

May be a part of the future of the practice of mathematics



Stabilization of evolution systems

AI and maths

Conclusion

Thank you for your attention
–

Any questions ?
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