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Framework
Framework: linear time-invariant control systems with a scalar
control (in state space representation)

ẋ = Ax + Bu(t).

A is a linear operator, B the control operator is linear, u ∈ L2(0, T ).

Goal: exponential stabilization around 0 with a linear feedback
(i.e.,stationary closed-loop control).

u(t) = Kx(t), ẋ = Ax + BKx = (A + BK)x,

∥x(t)∥ ≤ Ce−λt∥x0∥, λ > 0, t ≥ 0.

In finite dimension, make A + BK Hurwitz.
In infinite dimension, make the system dissipative (Lyapunov
function...).

Linearizations of important nonlinear models.
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Examples in infinite dimension

Boundary control of the temperature in a rod{
yt − ∆y = 0 on [0, L],
y(0) = u(t), y(L) = 0.

Control of a watergate

Ht + (HV )x = 0,

Vt +
(

gH + V 2

2

)
x

= 0,

V (0, t) = u0(t)γ
√

H0
up(t) − H0

down(t),

V (L, t) = uL(t)γ
√

HL
up(t) − HL

down(t)
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Distributed control in infinite dimension

Controlling a particle in an EM field{
i yt = ∆y + u(t)µ(t, x)y on Ω,

y = 0 on ∂Ω.

Moving a water tank

Ht + (HV )x = 0,

Vt +
(

gH + V 2

2

)
x

= −u(t)︸ ︷︷ ︸
acceleration

,

V (t, 0) = V (t, L) = 0, ∀t ≥ 0.
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Integrator backstepping

ẋ1 = ax1 + x2

ẋ2 = u(t)

Feedback for the first equation: x2 = −(λ + a)x1.
How do you “backstep” that through the integrator?

V = x2
1+

z1 = x1

lower triangular

z2 = x2 + (λ + a)x1

ż1 = −λz1 + z2

ż2 =
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ẋ2 = u(t)

Feedback for the first equation: x2 = −(λ + a)x1.
How do you “backstep” that through the integrator?

V = x2
1 + (x2 + (λ + a)x1)2

Backstepping change of variable:

z1 = x1

lower triangular

z2 = x2 + (λ + a)x1
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Integrator backstepping

ẋ1 = ax1 + x2

ẋ2 = u(t)

Feedback for the first equation: x2 = −(λ + a)x1.
How do you “backstep” that through the integrator?

V = x2
1 + (x2 + (λ + a)x1)2

Feedback: u(t) = λ(λ + a)z1 − (2λ + a)z2

z1 = x1 lower triangular
z2 = x2 + (λ + a)x1

ż1 = −λz1 + z2

ż2 = −λz2

Christophe Zhang (INRIA) L2S seminar 7 avril 2023 8 / 34



Difference between ODE and PDE backstepping

Boskovic, Balogh, Krstic, Backstepping in infinite dimension for a class of parabolic
distributed parameter systems, MCSS 2003.
Krstic’s backstepping comes from:

Modified backstepping on space discretization of the heat equation
Continuum limit of the resulting change of variables and feedback.

Modification? Compare the free systems.
ODE:

Free system:

ẋ1 = ax1 + x2

ẋ2 = 0

Stabilized system (with new
variables)

ż1 = −λz1 + z2

ż2 = −λz2.

The structure of the spectrum is changed.
In PDE backstepping, we want to translate the spectrum to the left.
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PDE backstepping: a historical example
Unstable heat equation (Boskovic, Balogh, Krstic, MCSS 2003) :{

yt − yxx = λy,

y(0) = 0, y(1) = U(t).

Transformation (Volterra, always invertible):

w(t, x) = y(t, x) −
∫ x

0
k(x, s)y(t, s)ds.

Target system:


wt − wxx = 0,

w(0) = 0,

w(1) = U(t) −
∫ 1

0
k(1, s)y(t, s)ds.

The target system has to be
reasonably related to the original
system.
Its stability is easier to read.

Feedback control design: U(t) =
∫ 1

0
k(1, y)y(t, s)ds.
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Kernel equations

w(t, x) = y(t, x) −
∫ x

0
k(x, s)y(t, s)ds has to solve the stable heat

equation.

After formal computations (IBP...): PDE for k(x, s).

Kernel equations on T := {0 ≤ s ≤ x ≤ 1}:


kxx − kss = λk,

k(x, 0) = 0,

k(x, x) = −λ
x

2 .

Explicit solution

k(x, s) = −λy
I1
(√

λ(x2 − s2)
)

√
λ(x2 − s2)

.

Everything is explicit!

U(t) =
∫ 1

0
k(1, s)y(t, s)ds.
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The development of backstepping

Developed for boundary stabilization, with Volterra

transformations (Krstic, Liu, Balogh, Smyshlaev, Bastin, Coron,

Di Meglio, Auriol...)

More general transformations? (Coron & Lü) Volterra

structure ↔ position of the control

Distributed control? (Coron, Nguyen, Gagnon, Morancey, CZ,

Hayat, Marx, Xiang...)
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Results

Theorem (Gagnon, Hayat, Xiang, CZ, 2022)
Let A be an anti-adjoint operator with domain D(A) ⊂ L2(0, L), with
simple eigenvalues behaving in nα, α > 1. Let B : C → D(A)′ be such
that (A, B) is controllable.
Then, for λ > 0 there exists a feedback Kλ such that the control
u(t) := Kλx(t) stabilizes the system exponentially with decay rate
λ:

∥x(t)∥Hs ≤ Ce−λt∥x(0)∥Hs

Covers many physical systems.
Kλ is relatively explicit
New spectrum: {λn − λ}.
D(A + BKλ) ̸= D(A)! But...
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Results

Some specific results for α = 1 (critical case...).

Theorem (CZ, 2019)
Let φ be a piecewise H1 function such that |nφ̂(n)| is bounded away
from 0 for n ∈ Z. Then, the transport equation{

yt + yx = u(t)φ,

y(t, 0) = y(t, L),

is controllable, and can be stabilized exponentially, as well as in
finite time, with explicit feedbacks.

Explicit: feedback given by its Fourier coefficients.
Spectrum: {λn − λ}.
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Results

Theorem (Coron, Hayat, Xiang, CZ, 2020)
The linearized water tank system

ht + hγ(v)x = 0,

vt + g (h)x = −u(t),
v(t, 0) = v(t, L) = 0, ∀t ≥ 0.

around the stationary state (hγ , 0, γ) with constant acceleration γ > 0
can be stabilized exponentially with decay rate λ < −C ln(γ).

Bound on λ due to controllability criterion (technical or
profound?)
Feedback is actually Proportional Integral (to account for
conservation of mass inside the tank).

Spectrum:
{

λn − λ + o

( 1
n

)}
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Generalization of backstepping
We keep the spirit of a transformation: map

ẋ = Ax + B(Kx + v(t))

into the stable system

˙(Tx) = Ã(Tx) + Bv(t).

The mapping T should be invertible and satisfy

T (A + BK) = ÃT,
TB = B.

Ty = y −
∫ x

0
k(x, s)y(t, s)ds;

kxx − kyy = λk,
k(x, 0) = 0,

k(x, x) = −λ
x

2 .

“Backstepping equations”: linear/affine operator equations of
two unknowns T and K.
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From Volterra to Fredholm backstepping

General transformations on functions: integral operators, aka Fredholm
transforms:

y(t, x) 7→
∫ L

0
K(x, s)y(t, s)ds.

Volterra transform Fredholm transform
Specific form General form

Solving the kernel equations Additional proof of invertibility
is sufficient

No additional assumption

Controllability assumption
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Solving the backstepping equations

1 Start with the operator equation

T (A + BK) = (A − λI)T

Take the linear version.
Projection on fn eigenvectors of A: ODE in (Tfn).

Tfn = (Kfn)(A − (λn + λ)I)−1B.

We get T as a function of K.
2 Find K with second equation

TB = B.

Infinite system of linear equations. Solutions requires fine
estimates on some infinite sums.
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Solving the backstepping equations

We have a candidate (T, K).
Controllability assumption → the Tfn form a basis of the
state space (and many more spaces) i.e.,T is invertible.
Main technical difficulty:

Technical estimates → perturbative approach
Fredholm alternative: invertible + compact = invertible?

Tfn = (Kfn)
[
−bn

λ
fn + (A − (λn + λ)I)−1(B − bnfn)

]
Specifying the spaces is important.
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Perspectives

Some perspectives:
Critical case: no perturbative approach. Perturbative approach in
a much weaker space?
Higher dimensions?
Observer design?
Link with Gramian stabilization and poleshifting: always the same
feedback, obtained in different ways!
Gramian, Riccati...Optimal control?

Papers:
✓ CZ, Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback, MCRF
✓ CZ, Finite-time internal stabilization of a 1-D linear transport equation, Systems & Control Letters,

Volume 133, 2018.
✓ Water tank: Jean-Michel Coron, Amaury Hayat, Shengquan Xiang & CZ. Stabilization of the

linearized water tank system. ARMA, 2021.
✓ General result: Ludovick Gagnon, Amaury Hayat, Shengquan Xiang & CZ. Fredholm backstepping

for critical operators and application to rapid stabilization for the linearized water waves, accepted in
Ann. Inst. Fourier, 2023.
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Framework
LTI systems with convex constraints

ẋ = Ax + Bu, x(t) ∈ H, u ∈ C ⊂ L2(0, T ; U).

Assumption: x(0) = 0. Denote the input to state map (variation of
constant):

LT :=
∫ T

0
e(T −t)Au(t)dt linear operator U → H.

Goal: what are the reachable states from 0, in time T > 0?

PhD work of Ivan Hasenohr (cosupervised with Sébastien Martin,
Camille Pouchol and Yannick Privat)
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Constraints in control problems

Constraints are natural
Chemical reaction: concentration of a reactant

0 ≤ u(t),
∫ T

0
u(t)dt ≤ Ctot.

Heating a room with radiators: electrical power

0 ≤ u(t) ≤ Pmax

Introducing infected mosquitoes to control the spread of the
dengue virus

0 ≤ u(t, x) ≤ m,

∫ T

0

∫
Ω

u(t, x)dtdx ≤ M.
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A priori certification of (non)-reachability
Baier, R., Büskens, C., Chahma, I. A., & Gerdts, M. (2007). Approximation of
reachable sets by direct solution methods for optimal control problems. Optimisation
Methods and Software, 22(3), 433-452.
Approximation of a convex set by a collection of support hyperplanes.
Polyhedral approximation.
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Separating hyperplanes

Focus on nonreachability: separating hyperplane between yf and
LT C
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Using optimization to be constructive

Is yf reachable in a fixed time T?
Rewrite as an optimization problem:

inf
u∈C

F (u)︸ ︷︷ ︸
cost

constraints

+ G(LT u)︸ ︷︷ ︸
reaching the target

π := inf
u∈U

δC(u) + δyf
(LT u).

δK(x) =
{

0 if x ∈ K,

+ ∞ otherwise

Convex optimization problem (only made of penalization terms, very
singular).

π ∈ {0, +∞}, yf reachable ⇐⇒ π = 0.
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Fenchel-Rockafellar duality

Idea: there is an auxiliary problem with a strong connexion to our
optimal control problem.
Dual problem:

d := inf
p∈H

sup
v∈C

⟨L∗
T p, v⟩ − ⟨p, yf ⟩ = inf

p∈H
JT

yf
(p).

This problem is nicer.

Weak duality
π ≥ −d

Even strong duality
π = −d

Idea! Prove that d < 0 so π > 0 i.e., π = +∞.

Certify numerically that J takes negative values.
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Certification by the dual problem

Theorem
The state yf is non reachable if and only if there exists p ∈ H such that
JT

yf
(p) < 0.
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Numerically

Descent algorithm
→ Chambolle-Pock algorithm: primal-dual method. Search of
min-max points of the Lagrangian:

L(u, p) = δC(u) − ⟨L∗
T p, u⟩ + ⟨p, yf ⟩

Descend until you can certify that the current value is negative
→ INTLAB package (interval arithmetic to give precise error
bounds).
If the algorithm stops moving (or max iterations reached), abort.
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Perspectives

Already tested on finite-dimensional problems
Streetcar
Rendez-vous problem

Next benchmark: discretized heat equation
Reachability? Find an adequate optimization problem and apply
dual strategy?

Papers:

✓ Pouchol, C., Trélat, E., & CZ (2023). Approximate control of parabolic equations with on-off
shape controls by Fenchel duality. arXiv preprint arXiv:2301.05011.

Upcoming preprints:

✓ Pouchol, C., Trélat, E., & CZ . Constructive reachability for linear control problems with conic
constraints

✓ Hasenohr, I., Pouchol, C., Privat, Y., & CZ, Computer-assisted proof of non-controllability for
linear finite-dimensional control systems

THANK YOU!
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