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Given P and H, find a stable C stabilizing the feedback system.
Stable: transfer function in H∞ (bounded and analytic in RHP).

Note: if P and H are stable, C=0 stabilizes the feedback system; 
but this not interesting.

We consider LTI SISO systems,
most of the arguments and 
results apply to LTI MIMO 
systems as well.





Bode Lecture at the IEEE Conference on Decision and Control in Tampa, Florida, December 1989

The lecture is like really good wine; it ages superbly.”      —Karl J Åström

IEEE Control Systems Magazine, August 2003, pp. 13—25. 

http://ieeecss.org/presentation/bode-lecture/respect-unstable



Bode Integrals 

L=CPH S=(1+L)
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Stein’s Bode lecture



When C is unstable we have to put more 

dirt above the red line. How much more? 

It is determined by the real part of the 

right half plane poles of C.

Use stable controller if possible.

Meaning of Bode Integrals:

Sensitivity cannot be made less than 1 at all frequencies; 

the dirt has to be distributed!



Simple, yet important, examples of unstable plants



Acrobot and pendubot are higher order unstable extensions.



Important Fact: Aggressive design leads to unstable controllers
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Example: let H(s)=1 and consider

is “large” means aggressive design 
(more emphasis on the performance, 
less emphasis on stability robustness)



Optimal Controller 
is stable

Optimal Controller 
is unstable

Transition from stable 
to unstable controller
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1. Do not introduce extra RHP poles in L(s)…Bode integral constraints

2. Off-line testing of the open-loop controller implementation

C
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3. When the plant is stable: 
Preserve stability under sensor failures or malicious attacks

4. Simultaneous stabilization of two plants P1 and P2 is equivalent to 
strong stabilization of an auxiliary plant P0

5. It is relatively easy to approximate a stable controller and analyze 
stability robustness of the feedback system

y(t)ym(t)

y(t)ym(t)

H





Plant and sensor: P(s)H(s)

There exists a strongly stabilizing controller C(s) for this system 

if and only if 

P(s)H(s) satisfies the parity interlacing property (p.i.p), i.e. 
between every pair of RHP zero there is even number of pole.

X X

PIP is satisfied:

X

PIP is not satisfied:

X X X

Youla, Bongiorno and Lu (1974):



PIP is satisfied:

Smith and Sondergeld (1986):

X XX

As the Im-parts of these zeros get smaller, it becomes more difficult 
to find a strongly stabilizing controller: minimum order of the strongly 
stabilizing controller increases.

Close to violating the PIP:

X



Let where are coprime in H∞; for a given 
controller in H∞ the feedback system is stable 
if and only if 

Strongly stabilizing controller design is equivalent to 

Construction of a unit in H∞ satisfying certain interpolation conditions.

𝑃 𝑠 𝐻 𝑠 = 𝑁(𝑠)/𝐷(𝑠) 𝑁,𝐷
𝐶 𝑠 = 𝑄(𝑠)

for all RHP zeros (including infinity) 𝑧 of 𝑁 𝑠 ,
where

𝑈 𝑠 = 𝐷 𝑠 + 𝑁(𝑠)𝑄(𝑠)

𝑈,𝑈−1 are in H∞ and 𝑈 𝑧 = 𝐷 𝑧

Sensitivity: 𝑆 𝑠 = 𝐷 𝑠 /𝑈 𝑠

Controller: 𝐶 𝑠 = (𝑈 𝑠 − 𝐷 𝑠 )/𝑁 𝑠



A simple algorithm for interpolating unit construction
Vidyasagar (1985); see also Doyle-Francis-Tannenbaum (1992)

𝑁 𝑠 : { 𝑧1, … , 𝑧𝑛 } zeros in extended RHP with 𝑧𝑛 = ∞ , 𝑎𝑠𝑠𝑢𝑚𝑒 𝑡ℎ𝑒𝑦 𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡

Intepolation values 𝐷(𝑧1 =: 𝑟1 , . . . , 𝐷(𝑧𝑛) =: 𝑟𝑛 } for simplicity 𝑎𝑠𝑠𝑢𝑚𝑒 𝑧𝑖 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙.

If they are not distinct then we have to deal with higher order interpolation conditions 

If they are not real then we have to consider interpolations in complex conjugate pairs.

Assume w. l. o. g. all 𝑟𝑖 > 0 p. i. p. holds they are of the same sign .



Start with 𝑈1 𝑠 = 𝑟1

clearly 𝑈1 is unit in H∞ and satisfies the first interpolation condition.

𝑈𝑘 𝑠 = 𝑈𝑘−1 𝑠 ( 1 + 𝑎𝑘 𝐹𝑘 𝑠 )𝑙𝑘 𝐹𝑘 𝑠 = ෑ

𝑚=1

𝑘−1
(𝑠 − 𝑧𝑚)

(𝑠 + 𝑧𝑚)

Find and         with such that 𝑎𝑘 𝑙𝑘 𝑈𝑘(𝑧𝑘) = 𝑟𝑘|𝑎𝑘| < 1, 𝑙𝑘 ≥ 1,

End with 𝑈𝑛 𝑠 =: 𝑈 𝑠

To satisfy these two conditions we may have to use a large 𝑙𝑘

Step 𝑘 > 1:



Example

𝑃 𝑠 𝐻 𝑠 =
𝑠−1 𝑠−2

𝑠−𝑝 2(𝑠+1)
𝑁(𝑠) =

𝑠−1 𝑠−2

𝑠+1 3 𝐷 𝑠 =
𝑠−𝑝 2

𝑠+1 2

XXX
1 2𝑝 ∞−1

𝑟1 =
1−𝑝 2

4
, 𝑟2=

2−𝑝 2

9
,       𝑟3 = 1

𝑈1 𝑠 = 𝑟1 = 0.01 

𝑈2 𝑠 = 𝑟1( 1 + 𝑎2 𝐹2 𝑠 )𝑙2 𝐹2 𝑠 =
(𝑠 − 1)

(𝑠 + 1)
𝑈2 2 = 𝑟2 = 0.07111

𝑝 = 1.2

𝑎2 = 3 ( (7.1111)1/𝑙2 − 1) smallest possible 𝑙2 is 8 for |𝑎2| < 1 → 𝑎2= 0.833658

1/𝐹2 𝑧2
𝑟2
𝑟1



𝑈3 𝑠 = 𝑈2 𝑠 ( 1 + 𝑎3 𝐹3 𝑠 )𝑙3 𝐹3 𝑠 =
(𝑠−1)

(𝑠+1)

(𝑠−2)

(𝑠+2)
𝑈3(∞)= 𝑟3 = 1

𝑟3 = 𝑈2 ∞ ( 1 + 𝑎3 𝐹3 ∞ )𝑙3 𝑙3 = 1 → 𝑎3 = − 0.21755

𝑈 𝑠 = 0.01 1 + 0.833658
(𝑠 − 1)

(𝑠 + 1)

8

1 − 0.21755
(𝑠 − 1)

(𝑠 + 1)

(𝑠 − 2)

(𝑠 + 2)

𝐶 𝑠 = (𝑈 𝑠 − 𝐷 𝑠 )/𝑁 𝑠

𝐶 𝑠 =
−1.206 (𝑠 + 6.822) (𝑠2 + 1.264𝑠 + 0.4058) (𝑠2 + 1.264𝑠 + 0.4818) (𝑠2 + 1.297𝑠 + 0.8953)

(𝑠 + 2) (𝑠 + 1)6

𝑆 = (1 + 𝑃𝐶)−1= 𝐷 𝑈−1 =

𝑠 + 1 7 𝑠 + 2 𝑠 − 1.2 2

(𝑠 + 4.191) (𝑠 + 0.4772) (𝑠2 + 0.1441𝑠 + 0.00525) (𝑠2 + 0.22𝑠 + 0.01217)(𝑠2 + 0.1652𝑠 + 0.007171) (𝑠2 + 0.1964𝑠 + 0.01001)

10th order

7th order



Interpolating unit construction using infinite dimensional  transfer functions 
Vidyasagar (1985), see also Ganesh and Pearson (1986)

Choose such that  𝑈 𝑠 = exp(𝐹 𝑠 ) 𝐹(𝑠) ≤ 𝑀 , ∀ 𝑅𝑒 𝑠 ≥ 0, for some 𝑀 > 0 and

𝑈(𝑧𝑖) = 𝑟𝑖= exp(𝐹 𝑧𝑖 )

𝐹 𝑧𝑖 = 𝑙𝑛(𝑟𝑖) = 𝑙𝑛( 𝑟𝑖 ) + 𝑗𝜑 𝑟𝑖 + 𝑗 2 𝜋 𝑚𝑖

𝑟𝑖= 𝑟𝑖 exp( 𝑗 𝜑 𝑟𝑖 + 2 𝜋 𝑚𝑖 )

Lagrange interpolation 

−𝜋

2
< 𝜑 𝑟𝑖 <

𝜋

2



Back to the Example

𝑁(𝑠) =
𝑠−1 𝑠−2

𝑠+1 3 𝐷 𝑠 =
𝑠−1.2 2

𝑠+1 2 𝑟1 =
1−1.2 2

4
, 𝑟2=

2−1.2 2

9
,       𝑟3 = 1

𝑓1 = 𝑙𝑛(𝑟1) , 𝑓2 = 𝑙𝑛 𝑟2 , 𝑓3 = 𝑙𝑛 𝑟3 = 0 𝐹(𝑠) =
𝑎𝑠+𝑏

𝑠+1 2

𝑓1 =
𝑎𝑧1+𝑏

𝑧1+1
2 , 𝑓2 =

𝑎𝑧2+𝑏

𝑧2+1
2

find 𝑎 and 𝑏 𝐹(𝑠) =
−5.3709 (𝑠+2.43)

𝑠+1 2



Back to the Example

𝑁(𝑠) =
𝑠−1 𝑠−2

𝑠+1 3 𝐷 𝑠 =
𝑠−1.2 2

𝑠+1 2 𝑟1 =
1−1.2 2

4
, 𝑟2=

2−1.2 2

9
,       𝑟3 = 1

𝑓1 = 𝑙𝑛(𝑟1) , 𝑓2 = 𝑙𝑛 𝑟2 , 𝑓3 = 𝑙𝑛 𝑟3 = 0 𝐹(𝑠) =
𝑎𝑠+𝑏

𝑠+1 2

𝑓1 =
𝑎𝑧1+𝑏

𝑧1+1
2 , 𝑓2 =

𝑎𝑧2+𝑏

𝑧2+1
2

find 𝑎 and 𝑏 𝐹(𝑠) =
−5.3709 (𝑠+2.43)

𝑠+1 2

𝑈 𝑠 = exp(𝐹 𝑠 )

𝑈−1 𝑠 = exp(−𝐹 𝑠 )

𝑈−1 is very large at 𝑠 = 0

Can we put a bound on the

𝐻∞ norm of 𝑈 and 𝑈−1?



Interpolating unit construction using the Nevanlinna-Pick method

𝜀 < 𝑈(𝑠) < 𝛾 , ∀ 𝑅𝑒 𝑠 ≥ 0, for some 𝛾 > 𝜀 > 0

𝑈(𝑧𝑖) = 𝑟𝑖𝑈 𝑠 must be bounded and analytic on and must satisfy and 

and            are conformal maps, for construction see Nehari’s book (1952);
see also: A. Ringh, J. Karlsson and A. Lindquist, IEEE T-AC, Jan. 2022.

𝑈



Final solution is given by 

The result is an infinite dimensional 𝑈(𝑠) because         is infinite dimensional.

H. Özbay, LNCIS vol. 398, pp. 105–113, Springer-Verlag, 2010.

S. Gümüşsoy and H. Özbay, IEEE T-AC, vol. 54, March 2009.

We approximate it to get a finite dimensional strongly stabilizing controller.

For examples see:

Using conformal mappings the problem is reduced to finding

This is a Nevanlinna-Pick problem, see e.g.



Robustness Analysis

Uncertain plant:

Sensitivity function for the system formed by controller C and plant P

Perturbed feedback system is stable if and only if 

This brings us to the problem of H∞ control with strongly stabilizing controllers (difficult open problem)

Additional design requirement: Minimize 
the LHS (mixed sensitivity minimization)



Strong stabilization under sufficient conditions (small gain)

Define                              ;

One-block H∞ control problem: Nehari, Nevanlinna-Pick, Sarason or Commutant Lifting 
theorems can be used (infinite dimensional N(s) can also be handled).



Extension to two block 

Two-block H∞ control problem: 
its solution is obtained from a spectral factorization + one-block H∞ control problem 

Allows parameterization of a set 
of strongly stabilizing controllers



MIMO version of the small gain approach 
in state space (Zeren and Özbay, 2000)



Allows parameterization of a set 
of strongly stabilizing controllers

MIMO version of the small gain approach 
in state space (Zeren and Özbay, 2000)

nth order controller



Hakkı Ulaş Ünal, 

“On Stable H∞ controller design for plants with infinitely many unstable zeros and poles”

Automatica, vol. 138 (2022), 110036.

Nazlı Gündeş and Hitay Özbay, 

“Strong Stabilization of High Order Plants” 

Automatica, vol. 140 (2022), 110256.

Jovan D. Stefanovski,

“Interpolation with strongly F-positive real matrix and application to strong stabilization”

Automatica, vol. 154 (2023), 111093.

There are many other methods for strongly stabilizing controller design. 
For further references and literature review see recently published papers on this topic:
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Gunter Stein said

From this perspective we should also

The Delay Margin characterizes 
a fundamental limitation of the feedback system:
aggressive controller design is dangerous for systems with delay



Delay Margin Optimization (an open problem):

Given a plant P(s) find a controller C(s) such that the feedback system is 
stable with largest possible delay margin. 

DM improvement: H. Özbay, N. Gündeş, Automatica (2020)
Lower bound for achievable DM: A. Ringh, J. Karlsson, A. Lindquist, IEEE T-AC (Jan-2022) 
DM optimization for low order systems: J. Chen, D. Ma, Y. Xu, J. Chen, IEEE T-AC (March 2022) 





NSF website:      https://www.nsf.gov/news/special_reports/cyber-physical/

Cyber-physical systems integrate sensing, computation, control and networking into 
physical objects and infrastructure, connecting them to the Internet and to each other. 

Some application areas: 
• Transportation and energy
• Healthcare and medicine
• Environment and sustainability
• Manufacturing

Networked Control Systems



Examples of Networked Control Systems

Smart Grid

Gas/Oil PipelinesCommunication Networks Transportation



Examples of Networked Control Systems

Tele-robotics

and many other applications involving tele-operation



proliferating quiescent

2K

2L
death death

: time delay 

Gene Regulatory Networks Cell Population Dynamics in AML

Examples of Biological Systems with Delays



Distributed Parameter Systems

• Systems with delay (TDS)

• Systems modeled by PDEs: examples include

flexible structures, biochemical processes, wave equation, etc.



is designed to stabilize           , leading to complementary sensitivity      𝐾(𝑠) 𝑃0(𝑠) 𝑇0 𝑠 =
𝑃𝑜 𝑠 𝐾(𝑠)

1 + 𝑃𝑜 𝑠 𝐾(𝑠)

𝑃𝑜 𝑒−ℎ𝑠

𝑃𝑜

K

(1 − 𝑒−ℎ𝑠)

yr

v
+

+++

- -

PC

𝑇 𝑠 =
𝑃 𝑠 𝐶(𝑠)

1 + 𝑃 𝑠 𝐶(𝑠)
= 𝑇0 𝑠 𝑒−ℎ𝑠

Main idea: elimination of time-delay from the feedback loop 

Issues:
• Robustness against plant uncertainty and delay mismatch?
• Above structure is not applicable for unstable plants, at least not directly.



Extensions to Unstable Plants 

Watanabe and Ito (1981)

Matausek and Micic (1996)

G. Meinsma and H. Zwart (2000)

L. Mirkin, N. Raskin (2003)

Q.-C. Zhong (2003) 

Q. Zhong and  G. Weiss (2004) 

J.E. Normey-Rico and E.F. Camacho (2002)

P. Garcia, P. Albertos (2013)

R. Sanz, P. Garcia and P. Albertos (2018)

…

Main argument: 
K should not depend on h, and the 
designs of H1 and H2 should be simple



Step 1:           is designed to stabilize           , leading to complementary sensitivity      𝐾(𝑠) 𝑃0(𝑠) 𝑇0 𝑠 =
𝑃𝑜 𝑠 𝐾(𝑠)

1 + 𝑃𝑜 𝑠 𝐾(𝑠)

Step 2:           is stable and satisfies𝐻(𝑠)
𝐻 𝑝𝑖 = 𝑒ℎ𝑝𝑖 𝑝𝑖 is a pole of 𝑃0 in RHP

| 𝐻 |∞ < 1/| 𝑊𝑚𝑇0 |∞
Nevanlinna-Pick problem:

𝑌(𝑠)/𝑅(𝑠) = 𝑇0 𝑠 𝑒−ℎ𝑠

𝑃Δ
P = 𝑃Δ ≔ 1 +𝑊𝑚Δ𝑝 𝑃𝑜𝑒

−𝑠ℎ, Δ𝑝 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒, Δ𝑝 ∞
< 1

𝑊𝑚 is stable: uncertainty weight, captures delay mismatch as well 

When 𝑊𝑚 = 0 (nominal case) 

Yegin and Ozbay, Systems and Control Letters, 2023



Step 1:           is designed to stabilize           , leading to complementary sensitivity      𝐾(𝑠) 𝑃0(𝑠) 𝑇0 𝑠 =
𝑃𝑜 𝑠 𝐾(𝑠)

1 + 𝑃𝑜 𝑠 𝐾(𝑠)

Step 2:           is stable and satisfies𝐻(𝑠)
𝐻 𝑝𝑖 = 1/𝑀(𝑝𝑖) 𝑝𝑖 is a pole of 𝑃0 in RHP

| 𝐻 |∞ < 1/| 𝑊𝑚𝑇0 |∞
Nevanlinna-Pick problem:

𝑌(𝑠)/𝑅(𝑠) = 𝑇0 𝑠 𝑀(𝑠)

P = 𝑃Δ ≔ 1 +𝑊𝑚Δ𝑝 𝑃𝑜𝑀, Δ𝑝 𝑖𝑠 𝑠𝑡𝑎𝑏𝑙𝑒, Δ𝑝 ∞
< 1

𝑊𝑚 is stable: uncertainty weight

When 𝑊𝑚 = 0 (nominal case) 

𝑃Δ
𝑃0(𝑠) = 𝑁(𝑠)/𝐷(𝑠) 𝑎𝑛𝑑 𝑀 𝑠 is an inner 
function replacing 𝑒−ℎ𝑠

1 − 𝐻𝑀

𝑁(𝑠) is outer and 𝐷(𝑠) is rational (finitely many unstable poles)
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Question: When is 𝐶𝑜 stable?
Difficult problem!

𝑃𝑜(𝑠)

𝑃𝑜

K

1 − 𝐻 𝑠 𝑀(𝑠)

yr

v
+

+++

- -

P𝐶𝑜

𝑀(𝑠)

𝑃0(𝑠) = 𝑁𝑜(𝑠)/𝐷(𝑠) and 𝑀 𝑠 is inner

𝑁𝑜(𝑠) is outer and 𝐷(𝑠) is rational (plant has finitely many unstable poles)

𝐻(𝑠)



Examples will be given for the following problems

SS0: Given 𝑃 find a strongly stabilizing controller 𝐶

SS1: Given 𝑃,𝑊1 and 𝜌, find a strongly stabilizing controller 𝐶 such that 𝑊1𝑆 ∞ ≤ 𝜌, 𝑆 =
1

1+𝑃𝐶

PC+
-

++

H

Back to strong stabilization under sufficient conditions (small gain)

Assume 𝐻 𝑠 = 1 and 𝑃(𝑠) = 𝑁 𝑠 /𝐷(𝑠) 𝑁 = 𝑀𝑁𝑜 𝐶 𝑠 = (𝑈 𝑠 − 𝐷 𝑠 )/𝑁 𝑠

Pick an outer function 𝑊𝑜 with 𝑊𝑜 ∞ = 1 and define 𝑅 𝑠 from

Now try to find a unit 

From earlier discussion:



Example: Strong stabilization for infinite dimensional systems 

𝑃 = 𝐷−1𝑀𝑁𝑜𝑁1

𝑀(𝑠) 𝑁𝑜(𝑠) 𝑁1(𝑠)

𝐷(𝑠)

𝑈 = 𝐷 +𝑀𝑁𝑜𝑁1𝐶



Define                          ,    if there exists                      satisfying 

then we have strong stabilization.

Conclusion:  SS0 has a solution if the following H∞ control problem is solvable

This approach gives a strongly stabilizing controller 
if and only if the delay is “small enough”

|| 𝑅 +𝑀𝑁𝑜𝐶1||∞ < 1



SS1: Given 𝑃,𝑊1 and 𝜌, find a strongly stabilizing controller 𝐶 such that 𝑊1𝑆 ∞ ≤ 𝜌



➢H∞ optimal controllers in the set of all strongly stabilizing controllers.

➢Delay margin optimization with strongly stabilizing controllers. 

➢ Sensitivity and mixed sensitivity minimization by stable controllers for 
infinite dimensional systems (including time delay systems).

➢ Fixed order or low order stable controllers.

➢ Strongly stabilizing controllers from the extended Smith Predictor.

➢ Extension to nonlinear systems.
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