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» What is strong stabilization?

» Unstable plants are “difficult” to control
» Why strong stabilization?

» Strong stabilization methods
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» Distributed parameter systems (DPS) with emphasis on time delays

» Strong stabilization for DPS

» Open research problems



Strong Stabilization

+ | c +:l | P : We consider LTI SISO systems,
most of the arguments and

results apply to LTI MIMO
H systems as well.

=0

Given P and H, find a stable C stabilizing the feedback system.
Stable: transfer function in H_ (bounded and analytic in RHP).

Note: if P and H are stable, C=0 stabilizes the feedback system;
but this not interesting.



Unstable Plants are
“Difficult” to Control



Respect the Unstable

The practical, physical (and sometimes dangerous)
consequences of control must be respected, and the
underlying principles must be clearly and well taught.

By Gunter Stein

Bode Lecture at the IEEE Conference on Decision and Control in Tampa, Florida, December 1989

The lecture is like really good wine; it ages superbly.”  —Karl J Astrém

IEEE Control Systems Magazine, August 2003, pp. 13—25.

http://ieeecss.org/presentation/bode-lecture/respect-unstable
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H ¢ Basic Facts About Unstable Plants

» Unstable systems are fundamentally, and quantifiably,
more difficult to control than stable ones.
* Controllers for unstable systems are operationally
critical.
mmmmm) ¢ Closed-loop systems with unstable components are only
locally stable.

Bode Integrals

Stein’s Bode lecture

o0
/Oln|8(jw)|dw=0 stable L = CPH

o
/o In|S(jw)ldw =) R(p;) unstable L with poles p;



Log Magnitude

Meaning of Bode Integrals:
Sensitivity cannot be made less than 1 at all frequencies;
the dirt has to be distributed!

Serious Design

When C is unstable we have to put more
dirt above the red line. How much more?
It is determined by the real part of the
right half plane poles of C.

Use stable controller if possible.
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Simple, yet important, examples of unstable plants
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Figure 14. Schematiic diagram of Chermobyl Unit 4 reactor.

Figure 6. NASA X-29forward-swept-wing aircraft (photo courtesy of NASA).

K —hs
P(s)H(s) = (Se_a) K>0, a>0, h>0
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Hand movement

Acrobot and pendubot are higher order unstable extensions.



Important Fact: Aggressive design leads to unstable controllers

Example: let H(s)=1 and consider

H 4
oot ,—h-S/(-CL
WS 1 ] €
Yopt = in 5 — T=1—S8 P(s) =
ot (C,P) is stable WoT 1+ PC s+ 1
.:x:.
S22
Wy (s) = 1 +s/va®+k V1+ k2/a2 k/a is “large” means aggressive design
l+s/a ’ (more emphasis on the performance,

Wa(s) = (1+ _/m) \/1 n ”,2/.;]2 less emphasis on stability robustness)
VoS ) = 5 . v [ ;



In(h) vs k/a
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Transition from stable
to unstable controller




Why Strong Stabilization?
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1. Do notintroduce extra RHP poles in L(S)...Bode integral constraints

2. Off-line testing of the open-loop controller implementation
%— h
L

>—>C—>




Ym(D) y(t)

When the plant is stable:
Preserve stability under sensor failures or malicious attacks

Simultaneous stabilization of two plants P, and P, is equivalent to
strong stabilization of an auxiliary plant P,

It is relatively easy to approximate a stable controller and analyze
stability robustness of the feedback system




Strong Stabilization
Methods



Youla, Bongiorno and Lu (1974):

Plant and sensor: P(S)H(s)

There exists a strongly stabilizing controller C(s) for this system
if and only if

P(s)H(S) satisfies the parity interlacing property (p.i.p), i.e.
between every pair of RHP zero there is even number of pole.

PIP is satisfied: PIP is not satisfied:

(O)
X
p. <
O

*—O

*—%—O0—%—0



Smith and Sondergeld (1986):

PIP is satisfied: X X O X X o)

Close to violating the PIP:

As the Im-parts of these zeros get smaller, it becomes more difficult
to find a strongly stabilizing controller: minimum order of the strongly
stabilizing controller increases.




Strongly stabilizing controller design is equivalent to ‘

Construction of a unit in H_ satisfying certain interpolation conditions.

Let P(s)H(s) = N(s)/D(s) where N,D are coprime in H_; for a given
controller C(s) = Q(s) in H_ the feedback system is stable
if and only if

U,U tareinH_and U(z) = D(2)
for all RHP zeros (including infinity) z of N(s),

Where  11(s) = D(s) + N(s)Q(s)

Sensitivity: S(s) = D(s)/U(s)

Controller: C(s) = (U(s) — D(s))/N(s)




A simple algorithm for interpolating unit construction
Vidyasagar (1985); see also Doyle-Francis-Tannenbaum (1992)

N(s): {z,..,z,}zeros in extended RHP with z,, = o, assume they are distinct

If they are not distinct then we have to deal with higher order interpolation conditions

Intepolation values { D(z;) =:1y,..., D(z,) =: 1, } for simplicity assume z; are real.

If they are not real then we have to consider interpolations in complex conjugate pairs.

Assume w.l.o.g. all; > 0 (p.i.p. holds <&<—> they are of the same sign).



Start with U;(s) = nr;

clearly U; is unitin A and satisfies the first interpolation condition.

Stepk > 1: -
Ui(s) = Uk-15) (1 + @ Fie())™ R = [
m=1 m

Find a; and [, with |ai| <1, [, =1, suchthat Ug(zy) = 1%

\ /

To satisfy these two conditions we may have to use a large [},

End with U,,(s) =: U(s)



1 p 2 o0
Example —x O—%—0 0

POHES) =32 N =" D= p=12
r, = (1—429)2’ — (2—919)2’ ro=1
U.(s) = 1, =0.01
Uy(s) =11(1+a, Fp(s))b F,(s) = g ; B Uu,2)=r,=0.07111

a, = 3((7.1111)"%2 — 1) smallest possible [, is 8 for |a,| <1 - a,= 0.833658

\ 1



—1) (s—2 — —
Us(s) = Uz(s)(1+ a3 Fs())*  Fy(s) = iy Val@l=m=1

r3 = Uy(0) (1 + a3 F3() )!s l;=1- a3 =-0.21755
_ -1\ (s—1) (s—2) Lo ord
U(s) = 0.01 (1 + 0.833658 G+D) ) (1 — 0.21755 Gl G+ 2)) — oraer

7th order

C(s) = (U(s) = D(s))/N(s) —

—1.206 (s + 6.822) (s® + 1.264s + 0.4058) (s® + 1.264s + 0.4818) (s® + 1.297s + 0.8953)

C(s) = 5+2) (s +1)°

S=(1+PC)'=DU™ =

(s+1)7(s+2)(s—1.2)
(s + 4.191) (s + 0.4772) (s2 + 0.1441s + 0.00525) (s2 + 0.22s + 0.01217)(s2 + 0.1652s + 0.007171) (s2 + 0.1964s + 0.01001)




Interpolating unit construction using infinite dimensional transfer functions
Vidyasagar (1985), see also Ganesh and Pearson (1986)

Choose U(s) = exp(F(s)) suchthat |F(s)| <M,V Re(s) = 0,forsome M > 0 and
U(z;) = 1= exp(F(z;))
ri= |rl exp(j (p(r) + 2T m;)) _7”< (p(ri)<§

F(z;) = In(ry) = In(Iry|) +jo(ry) +j 2mm;

Lagrange interpolation



Back to the Example

— - _ 2 _ 2 _ 2
N(s) = (s=1)(s=2) D(s) = (s—=1.2) i (1-1.2) . (2—1.2) =1

(s+1)3 (s+1)2 1 4’ 2 9 '
+b
fi=In(r), f, = In(ry), f3=In(rs) = — F(s) =7

aZ1+b ClZZ+b

_ _ —5.3709 (s+2.43)
fr = <z1+1)2'f2  (z2+1)?

(s+1)2

memm) find aand b F(s) =




Back to the Example

— — — 2 _ 2 — 2
N(s) = (s—1)(s—2) D(s) = (s—1.2) . = (1712) . (2-12) r =1

(s+1)3 (s+1)2 1 4’ 2 9 '
fi=ln(r), =), fz3=In(3)= mmm) [(S) = (Zi;
fi= (Z-i;jz ,f2 = (Czlzzifz mes) find a and b F(s) = _5'37((;1(15);’2'43)
U(s) = exp(F(s)) il | | | el
U~1(s) = exp(—=F(s)) %Z

U 1lisverylargeats =0

107 1072 10" 10? 10°

Can we put a bound on the
H_norm of U and U~ 1?

102 102 107" 10° 10° 102 103



Interpolating unit construction using the Nevanlinna-Pick method

U(s) must be bounded and analytic on C_.. and must satisfy U(z;) = r; and

e <|U(s)|<y,V Re(s) =0,forsome y >¢ >0

U:C.—W, W,:={re’®cC: e<r<y, —m<6<n}
Ul <7 p— U
C_|_ /r: W}/
. |
U < £~ ‘ @
¢ Oy
o Bi
D )
)

¢ and q)y are conformal maps, for construction see Nehari’s book (1952); Fee X ez /A

see also: A. Ringh, J. Karlsson and A. Lindquist, IEEE T-AC, Jan. 2022. i



Lecture Notes in Control
and Information Sciences 209

Using conformal mappings the problem is reduced to finding
9 :D—D suchthat O(oy)=pfBi, i=1,....n.
This is a Nevanlinna-Pick problem, see e.g. >

Final solution is given by [U(s) = (i?Y_l (D (@(s))) ]

The result is an infinite dimensional U(s) because @y is infinite dimensional.

We approximate it to get a finite dimensional strongly stabilizing controller.

For examples see:

L.
H. Ozbay, LNCIS vol. 398, pp. 105-113, Springer-Verlag, 2010.

\s. Gumissoy and H. Ozbay, IEEE T-AC, vol. 54, March 2009.




Robustness Analysis

N (14 WyAy)
D (1+WiAp)

Uncertain plant: Pa = Wi, Wo, Ap, Ay € H® ||[Ap  An]|le <1

Wi, Wa: uncertainty weights

U is designed from P, = N/D, and C'= (U — D) /N, resulting in S, = DU, T, =1 — 5,

;

Additional design requirement: Minimize
the LHS (mixed sensitivity minimization)

Sensitivity function for the system formed by controller C and plant P,

WS,
W51,

Sa = (1+WiAp) S, (1+ Ap  Ay]

Perturbed feedback system is stable if and only if

This brings us to the problem of H_ control with strongly stabilizing controllers (difficult open problem)

WS,
WoT,

o2



Strong stabilization under sufficient conditions (small gain)
P, = N/D, st. D € H® with D(c0) = 1
U=(D+NQ) C=0Q
Choose an arbitrary W,, W1 € H>®, st. W,(c0) =1
WoU Is unitary in H*° <= U is unitary in H™>
QEH® <— Q1 =W,Q € H™

Define W,D =:1—- R ; W,U=W,D+ NW,Q=1—-(R—-NQ)

Then Q = W 1Q; is a strongly stabilizing controller if Q; € H™ satisfies

(' (B = NQ1)llo <1

One-block H_ control problem: Nehari, Nevanlinna-Pick, Sarason or Commutant Lifting
theorems can be used (infinite dimensional N(S) can also be handled).



Extension to two block

Qlle < p <= |p7 W l(jw)Qi(jw)| <1 Yw

N
|ttt Q1

— Qe <p and  [[(R=NQ1)llc <1

R
0

<1

(0. 0]

Two-block H_, control problem:
its solution is obtained from a spectral factorization + one-block H_ control problem

If the problem is solvable for some p, then it is solvable for all p > p,. { Al pelrameie e o ¢ Set}

of strongly stabilizing controllers




R
0

MIMO version of the small gain approach H ~1

in state space (Zeren and Ozbay, 2000)

N
| p—l L Q1

Take W, = I, and P(s) = C'(sI — A)~'B, with (A, B) controllable, (C, A) observable.
A'X + XA - XBB'X =0 X =XT">0and Ax = A — BB"X is stable.

o0

P=ND'. N(s)=C(sI—Ax)"'B . D(s)=F(sI—Ax)"'B+1. F=-B"X



R
0

MIMO version of the small gain approach H ~1

in state space (Zeren and Ozbay, 2000)

N
| Q1

Take W, = I, and P(s) = C'(sI — A)~'B, with (A, B) controllable, (C, A) observable.
ATX + XA - XBB'X =0 X=XT">0and Ay = A — BBTX is stable.

o0

P=ND'. N(s)=C(sI—Ax)"'B . D(s)=F(sI—Ax)"'B+1. F=-B"X

If a stabilizing solution Y = YT > 0 exists for the ARE

AxY + Y ALY — Y (p*°C"C — XBB'X)Y + BB = 0

for some p > 0, then a strongly stabilizing controller is K(s) = F(sI — Ag)~'L [nth order controller }

Ak =A+BF+LC, L=-pYCT.

Closed loop system poles are A(Ax) and A(Ay), with 4y = A — p?YCTC'; moreover || K ||oo < p

Allows parameterization of a set J

If the problem is solvable for some p, then it is solvable for all p > p,. s
of strongly stabilizing controllers




There are many other methods for strongly stabilizing controller design.
For further references and literature review see recently published papers on this topic:

Hakki Ulas Unal,

“On Stable He= controller design for plants with infinitely many unstable zeros and poles”
Automatica, vol. 138 (2022), 110036.

Nazli Giindes and Hitay Ozbay,
“Strong Stabilization of High Order Plants”
Automatica, vol. 140 (2022), 110256.

Jovan D. Stefanovski,

“Interpolation with strongly F-positive real matrix and application to strong stabilization”
Automatica, vol. 154 (2023), 111093.
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Gunter Stein said

W K2
o K Dy
A= h e -‘T' =T

Respect the Unstab e
The practical, physical (and sometimes dangerous)

consequences of control must be respected, and the
underlying principles must be clearly and well taught.

From this perspective we should also

Respect the Delay

The Delay Margin characterizes
a fundamental limitation of the feedback system:
aggressive controller design is dangerous for systems with delay




v e C P Y
‘ l n
_|_

Delay Margin Optimization (an open problem):

Given a plant P(s) find a controller C(s) such that the feedback system is
stable with largest possible delay margin.

DM improvement: H. Ozbay, N. Glindes, Automatica (2020)
Lower bound for achievable DM: A. Ringh, J. Karlsson, A. Lindquist, IEEE T-AC (Jan-2022)
DM optimization for low order systems: J. Chen, D. Ma, Y. Xu, J. Chen, IEEE T-AC (March 2022)



Application Areas of DPS and TDS



NSF website:  https://www.nsf.gov/news/special_reports/cyber-physical/
N.% CYBER-PHYSICAL SYSTEMS:

Enabling a Smart and Connected World

Cyber-physical systems integrate sensing, computation, control and networking into
physical objects and infrastructure, connecting them to the Internet and to each other.

Systems

gnergy G d)

(sma

Transportation
K
Systems

Some application areas:

* Transportation and energy

* Healthcare and medicine

* Environment and sustainability
* Manufacturing

Networked Control Systems

= = = = Physical Sensing



Examples of Networked Control Systems

I\

|
i

Communication Networks Gas/Oil Pipelines Transportation



Examples of Networked Control Systems

Surgeon console Control system Patient-side manipulator

b
"N AN
.; . \

Tele-robotics

and many other applications involving tele-operation



Examples of Biological Systems with Delays

Gene Regulatory Networks

Activation

Gene |

O

Activation

Repression

Sys_

A

Sysn_l—r

Sys

delay

de
8

Cell Population Dynamics in AML

NATURE | VOL 414 | 1 NOVEMBER 2001
Normal haematopoiesis ’

. Mature
e cells
000 ,_

Stem Progenitor Oligolineage
cell cell precursors

Cancer

Cancer in
stem cells (,

2@
e

Cancer in g

progenitor > > # .

cells e

Stem cell Progenitor cell Mature cell

ath{ Y : death
) eat
proliferating 2L —LP
| T |
T :time delay 2K \ ]
N e e o e e e e AN\ = = = —— -




Distributed Parameter Systems

e Systems with delay (TDS)
* Systems modeled by PDEs: examples include

flexible structures, biochemical processes, wave equation, etc.



Classical Control of Stable LTI Plants with Time Delay: The Smith Predictor

.............................

Main idea: elimination of time-delay from the feedback loop

P,(s)K(s)

K is desi d to stabilize P, , leading t | t itivity To(s) =
(s) is designed to stabilize P,(s), leading to complementary sensitivity T, (s) 1+ 2K (S)

P(s)C(s)

1+ P(s)C(s) =To(s)e™

——) T(s)

Issues:
* Robustness against plant uncertainty and delay mismatch?
 Above structure is not applicable for unstable plants, at least not directly.



Extension to Unstable Systems

Watanabe and Ito (1981)

e Y mmmm e
Matausek and Micic (1996) ’”(f)l-"+ 5 O e O “; . :’ o .
G. Meinsma and H. Zwart (2000) i y2(0) l i ; l
L. Mirkin, N. Raskin (2003) i Hi©) f—{ Po@ |1 e’
E »1(7) : I W(?)

Q.-C. Zhong (2003) | Hys) = O

. M. Controller - ___ ___ 7 T+ o Plant
Q. Zhong and G. Weiss (2004) n(1)
J.E. Normey-Rico and E.F. Camacho (2002)
P. Garcia, P. Albertos (2013) Main argument:

K should not depend on h, and the
R. Sanz, P. Garcia and P. Albertos (2018) designs of H; and H, should be simple




Extension to Unstable Systems — Robust Design

Yegin and Ozbay, Systems and Control Letters, 2023

————————————————————————

O O——| K() Ho— B |
o i P= {PA = (1 + WpA,)Pe S, A, is stable, | Ap”oo < 1}
i_ 1- H(s)e™|«{ p ;

W, is stable: uncertainty weight, captures delay mismatch as well

ekl L L L L

H(s) |« O<+—n

P,(s)K(s)
1+ P,(s)K(s)

Step 1: K(s) is designed to stabilize Py(s), leading to complementary sensitivity Ty(s) =

Step 2: H(s) is stable and satisfies
H(p;) = e"vi p; is a pole of P, in RHP

Nevanlinna-Pick problem: {
[1H][eo < 1/|IWinTol|e

When W,,, = 0 (nominal case) ) Y(s)/R(s) = TO(S)e‘hS



Extension to more general DPS: Col$) r

r ! z U\ + Y
' . +’Q i+ > K(S) | >C)_> PA >
Py(s) = N(s)/D(s) and M(s) isaninner 1 ;
. . — . |
function replacing e " i f '
L HM e Pos) | |
N W/
N(s) is outer and D(s) is rational (finitely many unstable poles) |  ~=@ === ===»==7"==— N
H(s) | O+,
P={Py = (1+WpuA,)P,M, A, is stable, ||a,[|_ <1}
W, is stable: uncertainty weight
P,(s)K(s)

Step 1: K(s) is designed to stabilize Py(s), leading to complementary sensitivity Ty(s) =

1+ P,(s)K(s)
Step 2: H(s) is stable and satisfies
H(p;)) = 1/M(p;) p; is a pole of Py in RHP

Nevanlinna-Pick problem: {
[1H][eo < 1/|IWinTol|e

When W,,, = 0 (nominal case) ) Y(8)/R(s) = Toy(s)M(s)
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Strong Stabilization of DPS

I l
1
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———————————————————————————————

Py(s) = N,(s)/D(s) and M(s) is inner
N, (s) is outer and D(s) is rational (plant has finitely many unstable poles)

Question: When is C, stable?
Difficult problem!



Back to strong stabilization under sufficient conditions (small gain)

+

+>_Q y C P >
H |«
Assume H(s) = 1 and P(s) = N(s)/D(s) N = MN,, C(s) = (U(s) — D(s))/N(s)
From earlier discussion:
Pick an outer function W, with W,(c0) = 1 and define R(s) from W,D =:1—-R h
Now try to find aunit W,U =W,D+ NW,Q =1— (R — NQ)
\Then Q = W, tQq is a strongly stabilizing controller if Q1 € H> satisfies |[[(R — NQ1)l|lso < 1 )

Examples will be given for the following problems

SS0: Given P find a strongly stabilizing controller C

SS1: Given P, W, and p, find a strongly stabilizing controller C such that ||W;S||l < p, S = !

1+PC




Example: Strong stabilization for infinite dimensional systems

(=4 g ;
P(s) = — T T T ., h>0 P=D""MN_,N;
(s+1=2e70%) | 0 0 = 0
. s+4 s+4
s—4 5. (10 1 N s—p -1 =
— o T — S)= S+2 ‘$,+‘,
M(s) s+4 {0 e""""] | No(s) e 1(5) s+1=2e70% ] 0 0 S
D(s) = - p[ » > 0 being the only rootof s+ 1 —2¢ "4 =0inC,  p~0.5838
(5) s+ 1 P
SSO U=D+ MN,N,C Cecx"
DTIER -
,_ _9,—0.4s | “5+a » . .
N;(s):Hl 2?’ | e C=N,C, C et
§—=Pp 0 s+ 1 —|—:i-’_5
! S+




0.8

0.6

04r,

0.2

Define R:= (D —1), ifthereexists C; € 7 satisfying || R + MN,Cq||o <1

then we have strong stabilization.

Conclusion: SSO has a solution if the following H_ control problem is solvable

o lp+1 (s—4) —4hs
,:= inf - ) <1
b= T e ¢ 2L

This approach gives a strongly stabilizing controller
if and only if the delay is “small enough”

h <0.3377

“foz(p+'|)/5 for h=0

| | | | | | | | |
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
h



SS1: Given P, W; and p, find a strongly stabilizing controller C such that ||W;S||e < p

Assume that p > /2||W; D

- then we can find V), € 77 such that Vp_' c #°° and

1

Vp(jo)* =5 = [p~ Wi(jo)D(jo)?  weR
SS1 1s solvable if . . o —1
Y1 Qllfénﬁm H P + QIH
— 7 —4 "
D(s) = —L£  N(5)= — e with p = 0.5838 and h > 0.

s+ 1 (s+4)(s+1)

Take p =2 and W (s) = 1555

Al 0 10.0110.05[0.10{0.13]0.135410.14 {0.15] 0.2
11110.45]0.52(0.71]0.89]0.98[0.9991}1.013[1.041|1.165

the largest 1 tor which we can find a solution to SS1 using this method 1s 0.1354.



Open Research Problems

» H_ optimal controllers in the set of all strongly stabilizing controllers.
» Delay margin optimization with strongly stabilizing controllers.

» Sensitivity and mixed sensitivity minimization by stable controllers for
infinite dimensional systems (including time delay systems).

» Fixed order or low order stable controllers.
» Strongly stabilizing controllers from the extended Smith Predictor.

» Extension to nonlinear systems.
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