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An introductary example

Network of 3 discrete-time oscillators:

θ = 3

θ
=
1 θ

=
2

Osc. 1 Osc. 3

Osc. 2

3 communication channels, only one active at any time:
→ switching signal θ(t) ∈ Σ = {1, 2, 3}.
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An introductary example

Oscillator dynamics:

zi (t + 1) = Rzi (t) + ui (t), i = 1, 2, 3.

where zi (t) ∈ R2, ui (t) ∈ R2 and R =
(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)
, φ = π

6 .

θ = 3

θ
=
1 θ

=
2

Osc. 1 Osc. 3

Osc. 2

u1(t) =


γ(z2(t)− z1(t)), if θ(t) = 1

0, if θ(t) = 2

γ(z3(t)− z1(t)), if θ(t) = 3

u2(t) =


γ(z1(t)− z2(t)), if θ(t) = 1

γ(z3(t)− z2(t)), if θ(t) = 2

0, if θ(t) = 3

u3(t) =


0, if θ(t) = 1

γ(z2(t)− z3(t)), if θ(t) = 2

γ(z1(t)− z3(t)), if θ(t) = 3
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An introductary example

Error dynamics:
x(t + 1) = Aθ(t)x(t)

where x(t) =
(

z2(t)−z1(t)
z3(t)−z2(t)

)
and

A1 =
(

R−2γI2 0
γI2 R

)
,A2 =

(
R γI2
0 R−2γI2

)
,A3 =

(
R−γI2 −γI2
−γI2 R−γI2

)
.

To synchronize the oscillators, we impose a fairness constraint that θ
cannot keep activating the same communication channel.

∀t ∈ N,∃t ′ ≥ t, θ(t ′) 6= θ(t).

→ This is an example of an ω-regular language1.

1Baier & Katoen, Principles of model checking. 2008
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ω-regular languages

ω-regular languages are those that are characterized by Büchi automata.

Example:

1

1

2

33

2

2, 3

1, 2

1, 3

q0

q1

q2

q3

B = (Q,Σ, q0, δ,F ),

Q = {q0, q1, q2, q3},
Σ = {1, 2, 3},
F = {q0}.

A run q : N→ Q with q(0) = q0 and associated with a sequence θ : N→ Σ
is said to be accepting if q(t) ∈ F for infinitely many t ∈ N.

The language of B, denoted by Lang(B), consists of all sequences having an
accepting run in B.
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ω-regular languages

Useful to model many natural switching constraints:

Shuffled switching signals:

Each mode is activated an infinite number of times.

Persistent connectivity:

At all time, the union of future communication graphs is connected.

Linear temporal logic (LTL):

LTL formulas are commonly used to specify protocols in distributed
communication/computation architectures.

In general, ω-regular languages cannot be captured by dwell-time
constraints or graph-constrained switching signals.
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Talk outline

1 Stability analysis of systems with ω-regular switching sequences:

Aazan, Girard, Mason, & Greco, Stability of discrete-time switched linear

systems with ω-regular switching sequences. HSCC 2022.

Aazan, Girard, Mason, & Greco, A joint spectral radius for ω-regular

language driven switched linear systems. In Hybrid and Networked

Dynamical Systems - Modeling, Analysis and Control, to appear.

2 Application to switched observer design:

Aazan, Girard, Greco, & Mason, An automata theoretic approach to

observer design for switched linear systems. Submitted.
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Switched systems with ω-regular switching sequences

Consider a discrete-time switched linear system:

x(t + 1) = Aθ(t)x(t)

where θ(t) ∈ Σ = {1, · · · ,m} is a discrete switching variable,
x(t) ∈ Rn is the continuous state vector and A = {A1, · · · ,Am} is a
finite set of matrices.

Study the stability under ω-regular switching signals generated by a
Büchi automaton B.

Our goal: sufficient and necessary conditions for stability of (A,B).
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Stability notions

Consider a switched system (A,B) defined by a set of matrices A and a
Büchi automaton B.

Definition (Global asymptotic stability)

(A,B) is globally asymptotically stable (GAS) if there exists α ≥ 1 such
that for all θ ∈ Lang(B) and for all x0 ∈ Rn, we have:

stability: ‖x(t, x0, θ)‖ ≤ α‖x0‖,∀t ∈ N;

global attractivity: lim
t→∞

‖x(t, x0, θ)‖ = 0.
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A Lyapunov approach

Consider a candidate Lyapunov function V : Q × Rn → R+
0

θ = i

q q′

q ∈ Q q′ ∈ Q \ F

V (q, x) ≥ V (q′, Aix)
A transition toward a
non-accepting state.

θ = i

q q′

q ∈ Q q′ ∈ F

V (q, x) > V (q′, Aix)
A transition toward an
accepting state.

The function V (q(t), x(t)) is

always non-increasing
=⇒ stability

strictly decreasing when an accepting state is visited
=⇒ global attractivity
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Necessary and sufficient conditions

Theorem

If there exist a function V : Q × Rn → R+
0 , scalars α1, α2 > 0 and

λ ∈ (0, 1) such that for all x ∈ Rn:

α1‖x‖ ≤ V (q, x) ≤ α2‖x‖, q ∈ Q

V (q′,Aix) ≤ V (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) \ F
V (q′,Aix) ≤ λV (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) ∩ F

then (A,B) is GAS.

Conversely, if all matrices in A are invertible and (A,B) is GAS, then there
exists such a Lyapunov function.

In some cases, V can be taken quadratic of the form V (q, x) =
√
x>Pqx ,

Pq ∈ Rn×n, then the stability of (A,B) can be verified by solving LMIs.
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Numerical example - oscillator network

Consider our introductary example and let the candidate Lyapunov
function V be quadratic of the form V (q, x) =

√
x>Pqx .

1

1

2

33

2

2, 3

1, 2

1, 3

q0

q1

q2

q3


I4 ≤ Pq, q ∈ Q

A>i Pq′Ai ≤ Pq, q ∈ Q, i ∈ Σ, q′ = δ(q, i) 6= q0

A>i Pq0Ai ≤ λ2Pq q ∈ Q, i ∈ Σ, δ(q, i) = q0.

Solving these 16 LMIs numerically, we get a solution for λ = 0.96.
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Numerical example - oscillator network
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Characterization of the convergence rate

Consider an ω-regular switching signal θ belonging to the language of a
Büchi automaton B = (Q,Σ, q0, δ,F ).

Then, we define:

The sequence of return instants:

τ θ0 = 0, τ θk+1 = min{t > τ θk | qt ∈ F}

The shuffling index:

κθ(t) = max{k ∈ N | τ θk ≤ t}

The accepting rate:

γθ = lim inf
t→∞

κθ(t)

t
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Characterization of the convergence rate

Theorem

If there exist a function V : Q × Rn → R+
0 , scalars α1, α2, ρ > 0, and

λ ∈ (0, 1) such that for all x ∈ Rn, the following hold:

α1‖x‖ ≤ V (q, x) ≤ α2‖x‖, q ∈ Q

V (q′,Aix) ≤ ρV (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) \ F
V (q′,Aix) ≤ ρλV (q, x), q ∈ Q, i ∈ Σ, q′ ∈ δ(q, i) ∩ F

then, there exists C ≥ 1 such that for all x0 ∈ Rn, and for all θ ∈ Lang(B):

∀t ∈ N, ‖x(t, x0, θ)‖ ≤ Cρtλκ
θ(t)‖x0‖. (1)

Conversely, if all matrices in A are invertible and (1) holds, then there
exists such a Lyapunov function.
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A partial stability result

Even if ρ > 1, the system can be stable provided the accepting states are
visited sufficiently often:

Corollary

Consider a function V : Q × Rn → R+
0 as in the previous theorem.

Let θ ∈ Lang(B) such that γθ > − ln(ρ)
ln(λ) , then

lim
t→∞

‖x(t, x0, θ)‖ = 0, ∀x0 ∈ Rn.
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Talk outline

1 Stability analysis of systems with ω-regular switching sequences:

Aazan, Girard, Mason, & Greco, Stability of discrete-time switched linear

systems with ω-regular switching sequences. HSCC 2022.

Aazan, Girard, Mason, & Greco, A joint spectral radius for ω-regular

language driven switched linear systems. In Hybrid and Networked

Dynamical Systems - Modeling, Analysis and Control, to appear.

2 Application to switched observer design:

Aazan, Girard, Greco, & Mason, An automata theoretic approach to

observer design for switched linear systems. Submitted.
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Switched systems with unobservable modes

Consider a discrete-time switched linear system:

x(t + 1) = Aθ(t)x(t)

y(t) = Cθ(t)x(t)

where θ(t) ∈ Σ = {1, · · · ,m} is a discrete switching variable,
x(t) ∈ Rn is the continuous state vector, y(t) ∈ Rp is the output,
A = {A1, · · · ,Am} and C = {C1, · · · ,Cm} are finite sets of matrices.

We assume the system is unobservable for arbitrary switching (e.g. if
some pairs (Ai ,Ci ) are unobservable).

Our goal: identify a large set of “observable” switching signals and
propose an approach for asymptotic observer design.
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Observability of discrete-time switched systems

Definition (Reconstructibility)

The switched system is reconstructible, if there exist k ∈ N and θ such
that the knowledge of y(0), . . . , y(k) is sufficient to determine x(k).

θ(0), . . . , θ(k) is called a reconstructible sequence.

Theorem (Sun & Ge 2005)

A sequence of modes i1, . . . , ij ∈ Σ is reconstructible if and only if

ker
(

Ω(i1, . . . , ij)
)
⊆ ker(Ai1 · · ·Aij ).

where Ω(i1, . . . , ij) =
[
C>i1 A>i1 C

>
i2

· · · A>i1 · · ·A
>
ij−1

C>ij

]>
.
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Observability of discrete-time switched systems

Claim

To be able to “robustly” estimate the state of the system, the switching
signal needs to contain an infinite number of reconstructible sequences.

For k ∈ N, let O[k] denote the set of “minimal” reconstructible
sequences of length at most k .

Let us consider (Σ∗O[k])ω, the set of switching signals containing an
infinite number of sequences in O[k].

(Σ∗O[k])ω is an ω-regular language, we denote by Bk the associated
Büchi automaton.
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Example

A1 = I3

A2 = 1.5×
(

0 0 1
0 1 0
1 0 0

)
C1 = ( 1 0 0 )

C2 = ( 0 1 1 )

O[3] = {121, 122, 212, 221}

θ
=
1

θ
=
1θ

=
2

θ
=
1

θ = 2

θ = 2

θ = 1, 2

θ = 1

ε

1

2

21

12

22

θ = 1

θ = 2
θ = 2

Lang(Bk) = (Σ∗O[3])ω
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Observer structure

Let Bk = (Q,Σ, δ, q0,F ), we consider a switched observer with an internal
discrete state q(t) ∈ Q

q(t + 1) = δ(q(t), θ(t)), q(0) = q0,
x̂(t + 1) = Aθ(t)x̂(t) + L(q(t),θ(t))

(
y(t)− Cθ(t)x̂(t)

)
.

The dynamics of q is given by the transition function δ of Bk .

Consider the estimation error e(t) = x(t)− x̂(t), then

e(t + 1) = (Aθ(t) − L(q(t),θ(t))Cθ(t))e(t).

We want to ensure stability of the error dynamics for all θ ∈ Lang(Bk).
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Lyapunov conditions for observer design

Proposition

Let us assume that there exist V : Q × Rn → R+
0 , α1, α2, ρ > 0, and

λ ∈ (0, 1), such that for all e ∈ Rn:

α1‖e‖ ≤ V (q, e) ≤ α2‖e‖, q ∈ Q (2)

V
(
q′, (Ai − L(q,i)Ci )e

)
≤ ρV (q, e), q ∈ Q, i ∈ Σ, q′ = δ(q, i) /∈ F (3)

V
(
q′, (Ai − L(q,i)Ci )e

)
≤ ρλV (q, e), q ∈ Q, i ∈ Σ, q′ = δ(q, i) ∈ F (4)

Then, there exists C ≥ 1 such that for all e0 ∈ Rn, θ ∈ Lang(Bk):

∀t ∈ N, ‖e(t, e0, θ)‖ ≤ Cρtλκ
θ,Bk (t)‖e0‖.

Moreover, whenever the accepting rate γθ > − ln(ρ)
ln(λ) , we have

lim
t→∞

‖e(t, e0, θ)‖ = 0.
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Observer gain design

Proposition

Let ρ > 0 and λ ∈ (0, 1). Let us assume that there exist Pq ∈ Rn×n,
Y(q,i) ∈ Rn×p, for q ∈ Q, i ∈ Σ, such that the following LMIs hold:

Pq > 0 q ∈ Q, (5)(
Pq′ Pq′Ai−Y(q,i)Ci

? ρ2Pq

)
≥ 0 q ∈ Q, i ∈ Σ, q′ = δ(q, i) /∈ F (6)(

Pq′ Pq′Ai−Y(q,i)Ci

? ρ2λ2Pq

)
≥ 0 q ∈ Q, i ∈ Σ, q′ = δ(q, i) ∈ F (7)

Then, the function V (w , e) =
√
e>Pwe satisfies inequalities (2),(3) and

(4) with observer gains

L(q,i) = P−1
δ(q,i)Y(q,i), q ∈ Q, i ∈ Σ.
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A converse result

Let ρe(A) denote the ellipsoid norm approximation of the joint spectral
radius of A:

ρe(A) = inf

{
ρ ≥ 0

∣∣∣∣ ∃M > 0, M> = M,
∀A ∈ A, A>MA ≤ ρ2M

}
.

Theorem

Let us assume all matrices in A are invertible. Then, LMIs (5), (6), (7)
have a feasible solution for all ρ > ρe(A) and λ ∈ (0, 1).

The proof provides explicit expression of the solution of LMIs

Near universal approach to observer design for switched systems

The observer is robust to noise in the ISS sense
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Example

A1 = I3

A2 = 1.5×
(

0 0 1
0 1 0
1 0 0

)
C1 = ( 1 0 0 )

C2 = ( 0 1 1 )

O[3] = {121, 122, 212, 221}

θ
=
1

θ
=
1θ

=
2

θ
=
1

θ = 2

θ = 2

θ = 1, 2

θ = 1

ε

1

2

21

12

22

θ = 1

θ = 2
θ = 2

LMIs (5), (6), (7) solved for ρ = 1.5 and λ = 0.1:
=⇒ observer converges for switching signals with γθ > 0.18.
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Example
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γθ = 0.25 > 0.18
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γθ = 0.05 < 0.18
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Example
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Case study - multicellular converter

3 commutation cells:

3 states: Vc1 , Vc2 , I

1 output: I

8 modes + constraints

E

Sn Sj S2 S1

Sn Sj S2 S1

I

L

R

V cn−1 V cj−1 V c1

V s

The dynamics in each mode is unobservable
=⇒ unobservable for arbitrary switching

For k = 3, the set O[k] contains 48 minimal reconstructible sequences

LMIs (5), (6), (7) solved for ρ = 1 and λ = 0.1.

A. Girard (CNRS, L2S) Systems with ω-regular switching sequences 29 / 31



Case study - multicellular converter
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Conclusion and perspectives

Systems under ω-regular switching signals:

Stability analysis using Lyapunov functions and automata-theoretic
techniques.

Application to observer design for switched systems.

Perspectives and future work:

Computation of non-quadratic Lyapunov functions (e.g.
path-complete Lyapunov functions).

Language theoretic characterization of reconstructible sequences
without bound on the length.

Controller design for switched systems (not an easy extension).
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