Switched systems with ω-regular switching sequences

 Application to switched observer designAntoine Girard, joint work with G. Aazan, L. Greco, P. Mason

Laboratoire des Signaux et Systèmes (L2S)
Université Paris-Saclay, CNRS, CentraleSupélec

Systèmes

An introductary example

Network of 3 discrete-time oscillators:

3 communication channels, only one active at any time: \rightarrow switching signal $\theta(t) \in \Sigma=\{1,2,3\}$.

An introductary example

Oscillator dynamics:

$$
z_{i}(t+1)=R z_{i}(t)+u_{i}(t), i=1,2,3
$$

where $z_{i}(t) \in \mathbb{R}^{2}, u_{i}(t) \in \mathbb{R}^{2}$ and $R=\left(\begin{array}{cc}\cos (\phi)-\sin (\phi) \\ \sin (\phi) & \cos (\phi)\end{array}\right), \phi=\frac{\pi}{6}$.

An introductary example

Error dynamics:

$$
x(t+1)=A_{\theta(t)} x(t)
$$

where $x(t)=\binom{z_{2}(t)-z_{1}(t)}{z_{3}(t)-z_{2}(t)}$ and

$$
A_{1}=\left(\begin{array}{cc}
R-2 \gamma I_{2} & 0 \\
\gamma l_{2} & R
\end{array}\right), A_{2}=\left(\begin{array}{cc}
R & \gamma l_{2} \\
0 & R-2 \gamma I_{2}
\end{array}\right), A_{3}=\left(\begin{array}{cc}
R-\gamma I_{2} & -\gamma I_{2} \\
-\gamma I_{2} & R-\gamma I_{2}
\end{array}\right) .
$$

To synchronize the oscillators, we impose a fairness constraint that θ cannot keep activating the same communication channel.

$$
\forall t \in \mathbb{N}, \exists t^{\prime} \geq t, \theta\left(t^{\prime}\right) \neq \theta(t)
$$

\rightarrow This is an example of an ω-regular language ${ }^{1}$.

[^0]
ω-regular languages

ω-regular languages are those that are characterized by Büchi automata.
Example:

$$
\begin{aligned}
\mathcal{B} & =\left(Q, \Sigma, q_{0}, \delta, F\right), \\
Q & =\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}, \\
\Sigma & =\{1,2,3\}, \\
F & =\left\{q_{0}\right\} .
\end{aligned}
$$

- A run $q: \mathbb{N} \rightarrow Q$ with $q(0)=q_{0}$ and associated with a sequence $\theta: \mathbb{N} \rightarrow \Sigma$ is said to be accepting if $q(t) \in F$ for infinitely many $t \in \mathbb{N}$.
- The language of \mathcal{B}, denoted by $\operatorname{Lang}(\mathcal{B})$, consists of all sequences having an accepting run in \mathcal{B}.

ω-regular languages

Useful to model many natural switching constraints:

- Shuffled switching signals:

Each mode is activated an infinite number of times.

- Persistent connectivity:

At all time, the union of future communication graphs is connected.

- Linear temporal logic (LTL):

LTL formulas are commonly used to specify protocols in distributed communication/computation architectures.

In general, ω-regular languages cannot be captured by dwell-time constraints or graph-constrained switching signals.

Talk outline

(1) Stability analysis of systems with ω-regular switching sequences:

Aazan, Girard, Mason, \& Greco, Stability of discrete-time switched linear systems with ω-regular switching sequences. HSCC 2022.

Aazan, Girard, Mason, \& Greco, A joint spectral radius for ω-regular language driven switched linear systems. In Hybrid and Networked Dynamical Systems - Modeling, Analysis and Control, to appear.
(2) Application to switched observer design:

Aazan, Girard, Greco, \& Mason, An automata theoretic approach to observer design for switched linear systems. Submitted.

Switched systems with ω-regular switching sequences

- Consider a discrete-time switched linear system:

$$
x(t+1)=A_{\theta(t)^{x}} x(t)
$$

where $\theta(t) \in \Sigma=\{1, \cdots, m\}$ is a discrete switching variable, $x(t) \in \mathbb{R}^{n}$ is the continuous state vector and $\mathcal{A}=\left\{A_{1}, \cdots, A_{m}\right\}$ is a finite set of matrices.

- Study the stability under ω-regular switching signals generated by a Büchi automaton \mathcal{B}.
- Our goal: sufficient and necessary conditions for stability of $(\mathcal{A}, \mathcal{B})$.

Stability notions

Consider a switched system $(\mathcal{A}, \mathcal{B})$ defined by a set of matrices \mathcal{A} and a Büchi automaton \mathcal{B}.

Definition (Global asymptotic stability)

$(\mathcal{A}, \mathcal{B})$ is globally asymptotically stable (GAS) if there exists $\alpha \geq 1$ such that for all $\theta \in \operatorname{Lang}(\mathcal{B})$ and for all $x_{0} \in \mathbb{R}^{n}$, we have:

- stability: $\left\|\mathbf{x}\left(t, x_{0}, \theta\right)\right\| \leq \alpha\left\|x_{0}\right\|, \forall t \in \mathbb{N}$;
- global attractivity: $\lim _{t \rightarrow \infty}\left\|\mathbf{x}\left(t, x_{0}, \theta\right)\right\|=0$.

A Lyapunov approach

Consider a candidate Lyapunov function $V: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$

A transition toward a non-accepting state.

A transition toward an accepting state.

The function $V(q(t), x(t))$ is

- always non-increasing
\Longrightarrow stability
- strictly decreasing when an accepting state is visited
\Longrightarrow global attractivity

Necessary and sufficient conditions

Theorem

If there exist a function $V: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$, scalars $\alpha_{1}, \alpha_{2}>0$ and $\lambda \in(0,1)$ such that for all $x \in \mathbb{R}^{n}$:

$$
\begin{array}{lr}
\alpha_{1}\|x\| \leq V(q, x) \leq \alpha_{2}\|x\|, & q \in Q \\
V\left(q^{\prime}, A_{i} x\right) \leq V(q, x), & q \in Q, i \in \Sigma, q^{\prime} \in \delta(q, i) \backslash F \\
V\left(q^{\prime}, A_{i} x\right) \leq \lambda V(q, x), & q \in Q, i \in \Sigma, q^{\prime} \in \delta(q, i) \cap F
\end{array}
$$

then $(\mathcal{A}, \mathcal{B})$ is $G A S$.
Conversely, if all matrices in \mathcal{A} are invertible and $(\mathcal{A}, \mathcal{B})$ is $G A S$, then there exists such a Lyapunov function.

In some cases, V can be taken quadratic of the form $V(q, x)=\sqrt{x^{\top} P_{q} x}$, $P_{q} \in \mathbb{R}^{n \times n}$, then the stability of $(\mathcal{A}, \mathcal{B})$ can be verified by solving LMIs.

Numerical example - oscillator network

Consider our introductary example and let the candidate Lyapunov function V be quadratic of the form $V(q, x)=\sqrt{x^{\top} P_{q} x}$.

$$
\begin{cases}I_{4} \leq P_{q}, & q \in Q \\ A_{i}^{\top} P_{q^{\prime}} A_{i} \leq P_{q}, & q \in Q, i \in \Sigma, q^{\prime}=\delta(q, i) \neq q_{0} \\ A_{i}^{\top} P_{q_{0}} A_{i} \leq \lambda^{2} P_{q} & q \in Q, i \in \Sigma, \delta(q, i)=q_{0}\end{cases}
$$

Solving these 16 LMIs numerically, we get a solution for $\lambda=0.96$.

Numerical example - oscillator network

Characterization of the convergence rate

Consider an ω-regular switching signal θ belonging to the language of a Büchi automaton $\mathcal{B}=\left(Q, \Sigma, q_{0}, \delta, F\right)$.

Then, we define:

- The sequence of return instants:

$$
\tau_{0}^{\theta}=0, \tau_{k+1}^{\theta}=\min \left\{t>\tau_{k}^{\theta} \mid q_{t} \in F\right\}
$$

- The shuffling index:

$$
\kappa^{\theta}(t)=\max \left\{k \in \mathbb{N} \mid \tau_{k}^{\theta} \leq t\right\}
$$

- The accepting rate:

$$
\gamma^{\theta}=\liminf _{t \rightarrow \infty} \frac{\kappa^{\theta}(t)}{t}
$$

Characterization of the convergence rate

Theorem

If there exist a function $V: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$, scalars $\alpha_{1}, \alpha_{2}, \rho>0$, and $\lambda \in(0,1)$ such that for all $x \in \mathbb{R}^{n}$, the following hold:

$$
\begin{array}{lr}
\alpha_{1}\|x\| \leq V(q, x) \leq \alpha_{2}\|x\|, & q \in Q \\
V\left(q^{\prime}, A_{i} x\right) \leq \rho V(q, x), & q \in Q, i \in \Sigma, q^{\prime} \in \delta(q, i) \backslash F \\
V\left(q^{\prime}, A_{i} x\right) \leq \rho \lambda V(q, x), & q \in Q, i \in \Sigma, q^{\prime} \in \delta(q, i) \cap F
\end{array}
$$

then, there exists $C \geq 1$ such that for all $x_{0} \in \mathbb{R}^{n}$, and for all $\theta \in \operatorname{Lang}(\mathcal{B})$:

$$
\begin{equation*}
\forall t \in \mathbb{N},\left\|\mathbf{x}\left(t, x_{0}, \theta\right)\right\| \leq C \rho^{t} \lambda^{\kappa^{\theta}(t)}\left\|x_{0}\right\| \tag{1}
\end{equation*}
$$

Conversely, if all matrices in \mathcal{A} are invertible and (1) holds, then there exists such a Lyapunov function.

A partial stability result

Even if $\rho>1$, the system can be stable provided the accepting states are visited sufficiently often:

Corollary

Consider a function $V: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}$as in the previous theorem. Let $\theta \in \operatorname{Lang}(\mathcal{B})$ such that $\gamma^{\theta}>-\frac{\ln (\rho)}{\ln (\lambda)}$, then

$$
\lim _{t \rightarrow \infty}\left\|\mathbf{x}\left(t, x_{0}, \theta\right)\right\|=0, \forall x_{0} \in \mathbb{R}^{n}
$$

Talk outline

(1) Stability analysis of systems with ω-regular switching sequences:

Aazan, Girard, Mason, \& Greco, Stability of discrete-time switched linear systems with ω-regular switching sequences. HSCC 2022.

Aazan, Girard, Mason, \& Greco, A joint spectral radius for ω-regular language driven switched linear systems. In Hybrid and Networked Dynamical Systems - Modeling, Analysis and Control, to appear.
(2) Application to switched observer design:

Aazan, Girard, Greco, \& Mason, An automata theoretic approach to observer design for switched linear systems. Submitted.

Switched systems with unobservable modes

- Consider a discrete-time switched linear system:

$$
\begin{aligned}
x(t+1) & =A_{\theta(t)} x(t) \\
y(t) & =C_{\theta(t)} x(t)
\end{aligned}
$$

where $\theta(t) \in \Sigma=\{1, \cdots, m\}$ is a discrete switching variable, $x(t) \in \mathbb{R}^{n}$ is the continuous state vector, $y(t) \in \mathbb{R}^{p}$ is the output, $\mathcal{A}=\left\{A_{1}, \cdots, A_{m}\right\}$ and $\mathcal{C}=\left\{C_{1}, \cdots, C_{m}\right\}$ are finite sets of matrices.

- We assume the system is unobservable for arbitrary switching (e.g. if some pairs $\left(A_{i}, C_{i}\right)$ are unobservable).
- Our goal: identify a large set of "observable" switching signals and propose an approach for asymptotic observer design.

Observability of discrete-time switched systems

Definition (Reconstructibility)

The switched system is reconstructible, if there exist $k \in \mathbb{N}$ and θ such that the knowledge of $y(0), \ldots, y(k)$ is sufficient to determine $x(k)$. $\theta(0), \ldots, \theta(k)$ is called a reconstructible sequence.

Theorem (Sun \& Ge 2005)

A sequence of modes $i_{1}, \ldots, i_{j} \in \Sigma$ is reconstructible if and only if

$$
\operatorname{ker}\left(\Omega\left(i_{1}, \ldots, i_{j}\right)\right) \subseteq \operatorname{ker}\left(A_{i_{1}} \cdots A_{i_{j}}\right)
$$

where $\Omega\left(i_{1}, \ldots, i_{j}\right)=\left[\begin{array}{llll}C_{i_{1}}^{\top} & A_{i_{1}}^{\top} C_{i_{2}}^{\top} & \cdots & A_{i_{1}}^{\top} \cdots A_{i_{j-1}}^{\top} C_{i_{j}}^{\top}\end{array}\right]^{\top}$.

Observability of discrete-time switched systems

Claim

To be able to "robustly" estimate the state of the system, the switching signal needs to contain an infinite number of reconstructible sequences.

- For $k \in \mathbb{N}$, let $\mathcal{O}^{[k]}$ denote the set of "minimal" reconstructible sequences of length at most k.
- Let us consider $\left(\Sigma^{*} \mathcal{O}^{[k]}\right)^{\omega}$, the set of switching signals containing an infinite number of sequences in $\mathcal{O}^{[k]}$.
- $\left(\Sigma^{*} \mathcal{O}^{[k]}\right)^{\omega}$ is an ω-regular language, we denote by \mathcal{B}_{k} the associated Büchi automaton.

Example

$$
\begin{aligned}
A_{1} & =I_{3} \\
A_{2} & =1.5 \times\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
C_{1} & =\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
C_{2} & =\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) \\
\mathcal{O}^{[3]} & =\{121,122,212,221\}
\end{aligned}
$$

Observer structure

Let $\mathcal{B}_{k}=\left(Q, \Sigma, \delta, q_{0}, F\right)$, we consider a switched observer with an internal discrete state $q(t) \in Q$

$$
\begin{aligned}
& q(t+1)=\delta(q(t), \theta(t)), q(0)=q_{0} \\
& \hat{x}(t+1)=A_{\theta(t)} \hat{x}(t)+L_{(q(t), \theta(t))}\left(y(t)-C_{\theta(t)} \hat{x}(t)\right) .
\end{aligned}
$$

The dynamics of q is given by the transition function δ of \mathcal{B}_{k}.
Consider the estimation error $e(t)=x(t)-\hat{x}(t)$, then

$$
e(t+1)=\left(A_{\theta(t)}-L_{(q(t), \theta(t))} C_{\theta(t)}\right) e(t)
$$

We want to ensure stability of the error dynamics for all $\theta \in \operatorname{Lang}\left(\mathcal{B}_{k}\right)$.

Lyapunov conditions for observer design

Proposition

Let us assume that there exist $V: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{0}^{+}, \alpha_{1}, \alpha_{2}, \rho>0$, and $\lambda \in(0,1)$, such that for all $e \in \mathbb{R}^{n}$:

$$
\begin{array}{lr}
\alpha_{1}\|e\| \leq V(q, e) \leq \alpha_{2}\|e\|, & q \in Q \\
V\left(q^{\prime},\left(A_{i}-L_{(q, i)} C_{i}\right) e\right) \leq \rho V(q, e), & q \in Q, i \in \Sigma, q^{\prime}=\delta(q, i) \notin F \\
V\left(q^{\prime},\left(A_{i}-L_{(q, i)} C_{i}\right) e\right) \leq \rho \lambda V(q, e), & q \in Q, i \in \Sigma, q^{\prime}=\delta(q, i) \in F
\end{array}
$$

Then, there exists $C \geq 1$ such that for all $e_{0} \in \mathbb{R}^{n}, \theta \in \operatorname{Lang}\left(\mathcal{B}_{k}\right)$:

$$
\forall t \in \mathbb{N},\left\|\mathbf{e}\left(t, e_{0}, \theta\right)\right\| \leq C \rho^{t} \lambda^{\kappa^{\theta, \mathcal{B}_{k}}(t)}\left\|e_{0}\right\| .
$$

Moreover, whenever the accepting rate $\gamma^{\theta}>-\frac{\ln (\rho)}{\ln (\lambda)}$, we have

$$
\lim _{t \rightarrow \infty}\left\|\mathbf{e}\left(t, e_{0}, \theta\right)\right\|=0
$$

Observer gain design

Proposition

Let $\rho>0$ and $\lambda \in(0,1)$. Let us assume that there exist $P_{q} \in \mathbb{R}^{n \times n}$, $Y_{(q, i)} \in \mathbb{R}^{n \times p}$, for $q \in Q, i \in \Sigma$, such that the following LMIs hold:

$$
\begin{array}{lr}
P_{q}>0 & q \in Q, \\
\left(\begin{array}{cc}
P_{q^{\prime}} & P_{q^{\prime}} A_{i}-Y_{(q, i)} C_{i} \\
\star & \rho^{2} P_{q}
\end{array}\right) \geq 0 & q \in Q, i \in \Sigma, q^{\prime}=\delta(q, i) \notin F \\
\left(\begin{array}{cc}
P_{q^{\prime}} & P_{q^{\prime}} A_{i}-Y_{(q, i)} C_{i} \\
\star & \rho^{2} \lambda^{2} P_{q}
\end{array}\right) \geq 0 & q \in Q, i \in \Sigma, q^{\prime}=\delta(q, i) \in F \tag{7}
\end{array}
$$

Then, the function $V(w, e)=\sqrt{e^{\top} P_{w} e}$ satisfies inequalities (2),(3) and (4) with observer gains

$$
L_{(q, i)}=P_{\delta(q, i)}^{-1} Y_{(q, i)}, q \in Q, i \in \Sigma
$$

A converse result

Let $\rho_{e}(\mathcal{A})$ denote the ellipsoid norm approximation of the joint spectral radius of \mathcal{A} :

$$
\rho_{e}(\mathcal{A})=\inf \left\{\begin{array}{l|l}
\rho \geq 0 & \begin{array}{c}
\exists M>0, M^{\top}=M \\
\forall A \in \mathcal{A}, A^{\top} M A \leq \rho^{2} M
\end{array}
\end{array}\right\} .
$$

Theorem

Let us assume all matrices in \mathcal{A} are invertible. Then, LMIs (5), (6), (7) have a feasible solution for all $\rho>\rho_{e}(\mathcal{A})$ and $\lambda \in(0,1)$.

- The proof provides explicit expression of the solution of LMIs
- Near universal approach to observer design for switched systems
- The observer is robust to noise in the ISS sense

Example

$$
\begin{aligned}
A_{1} & =I_{3} \\
A_{2} & =1.5 \times\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right) \\
C_{1} & =\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right) \\
C_{2} & =\left(\begin{array}{lll}
0 & 1 & 1
\end{array}\right) \\
\mathcal{O}^{[3]} & =\{121,122,212,221\}
\end{aligned}
$$

LMIs (5), (6), (7) solved for $\rho=1.5$ and $\lambda=0.1$:
\Longrightarrow observer converges for switching signals with $\gamma^{\theta}>0.18$.

Example

Example

Statistics over 10000 simulations

Case study - multicellular converter

3 commutation cells:

- 3 states: $V_{c_{1}}, V_{c_{2}}, I$
- 1 output: I
- 8 modes + constraints

- The dynamics in each mode is unobservable \Longrightarrow unobservable for arbitrary switching
- For $k=3$, the set $\mathcal{O}^{[k]}$ contains 48 minimal reconstructible sequences
- LMIs (5), (6), (7) solved for $\rho=1$ and $\lambda=0.1$.

Case study - multicellular converter

Simulation result
Büchi automaton \mathcal{B}_{k}

Conclusion and perspectives

Systems under ω-regular switching signals:

- Stability analysis using Lyapunov functions and automata-theoretic techniques.
- Application to observer design for switched systems.

Perspectives and future work:

- Computation of non-quadratic Lyapunov functions (e.g. path-complete Lyapunov functions).
- Language theoretic characterization of reconstructible sequences without bound on the length.
- Controller design for switched systems (not an easy extension).

[^0]: ${ }^{1}$ Baier \& Katoen, Principles of model checking. 2008

