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Context

Main Motivation

Physical motivation :
Mean-field approximation to reduce the complexity.

Mathematical motivation :
Mean-field Games (MFG) and Mean-field Control (MFC) for quantum particles ?
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Classical MFG and MFC

MFG and MFC

Initiated by Lasry-Lions and independently by Huang-Caines-Malhamé in 2006.

Theory to analysis differential games with very large number of agents.

Remark : In this talk agent = player = particle.

Sofiane CHALAL, Nina H. AMINI, Gaoyue GUO (CentraleSupélec, Université Paris-Saclay)Quantum mean-field filtering and control February 15, 2024 4 / 25



Classical MFG and MFC

N -particles systems

N -controlled particles each one taken value in space state X = R, [0, 1],M, ...

The space state of the system is the Cartesian product XN = X× X× · · · × X

A system of SDE gives the dynamics of each particles.

dXu,j
t = b(Xu,j

t , uj
t , ν̂

u,N
t )dt+ σ(Xu,j

t )dW j
t , 1 ≤ j ≤ N

ν̂u,N
t :=

1

N

N∑
k=1

δ
X

u,k
t

, ν̂u,N = (ν̂u,N
t )0≤t≤T , u

j
t := ut(X

uj ,j
t )

Provided some set U of admissible strategies and a time horizon T , agent j aims to
minimize its cost U 3 u 7→ Jj(u) ∈ R with Jj(u) ≡ J (u, ν̂u,N

t ):

Jj(u) := E
[∫ T

0

f(X
uj ,j
t , uj

t , ν̂
u,N
t )dt+ g(X

uj ,j

T , ν̂u,N
T )

]
,

uj := (u1, . . . , uj−1, u, uj+1, . . . , uN ) and f, g are some cost functions.
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Classical MFG and MFC

N -Particles Problem

Namely, u∗ := (u∗,1, . . . , u∗,N ) ∈ UN is said to achieve a Nash equilibrium if

J (u∗,j , ν̂u
∗,N ) = inf

u∈U
J (u, ν̂u

∗
j ,N ),

where u∗
j := (u∗,1, . . . , u∗,j−1, u, u∗,j+1, . . . , u∗,N ).

Problem : Very difficult to solve !
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Classical MFG and MFC

Propagation of chaos

Ansatz :
When N → ∞ the particles becomes independent.

Law(X1
t , . . . , X

N
t ) ≈ νt ⊗ · · · ⊗ νt.

We can focus on the typical particle :

dXt = b(Xt, ut,L(Xt))dt+ σ(Xt)dWt.
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Classical MFG and MFC

MFG Problem

The MFG problem is defined as follows : find a pair (û, ν) such that denoting
by X̂ the solution of :

dX̂t = b(X̂t, û(X̂t), νt)dt+ σ(X̂t)dWt

X̂0 = x0.

then νt = L(X̂t), and ∀t ∈ [0, T ]

J
(
û(•), ν(•)

)
≤ J

(
u(•), ν(•)

)
, ∀u ∈ U .

From the MFG problem solution, get an approximation for N -particles
problems.
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Classical MFG and MFC

Main ingredients

1 Differential games → Continuous time + Control by Closed-Loop Feedback
2 Weak interaction → Mean Field Approximation → Typical particle.
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Quantum Feedback Control

Quantum Mechanics in 1 Slide

Two concepts in quantum mechanics :
1 Superposition
2 Entanglement

Evolution and measurement
1 Evolution of state : Schrödinger equation
2 Measurement : Born Rule

Main difficulties :
1 We can’t separate dynamics of each particle.
2 It’s not clear what can be the empirical measure in quantum setting.
3 We can’t measure without distrub the system and continuously observing freeze

the dynamics.
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Quantum Feedback Control

Should consider open quantum systems subject to indirect measurements.

The formalism was invented through the pioneering work of Belavkin in the
’80s.

The mean-field extension as well as Quantum MFG was done in 2020 by
Kolokoltsov.

Figure: Synoptic of Quantum Feedback Control
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Quantum Feedback Control

Continuous monitored N -Quantum particle systems

Focus on finite space state i.e X = {1, . . . , d} endowed with Borel measure µ
In this case H := L2((X, µ);C) = Cd

The state of the system is the Tensor product HN = H⊗H · · · ⊗H
The state is given by density matrix

ρN ∈ S(HN ) :=
{
ρ ∈ MdN (C); ρ ≥ 0, tr(ρ) = 1, ρ = ρ†

}
Evolution of Schrödinger-Belavkin equation :

dρN
t = −i[H,ρN

t ]dt+
N∑
j=1

(
Ljρ

N
t L†

j −
1

2

{
L†
jLj ,ρ

N
t

})
dt

+
√
η

N∑
j=1

(
ρN
t L†

j + Ljρ
N
t −tr

(
(Lj + L†

j)ρ
N
t

)
ρN
t

)
dW j

t

Signal process :

dY j
t = dW j

t +
√
ηtr

(
(Lj + L†

j)ρ
N
t

)
dt, 1 ≤ j ≤ N.
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Quantum Feedback Control

Instruments and Operators

H =
∑

j(Hj + u(Y j
t )Ĥj) +

∑
i<j Aij/N.

[C,D] = CD −DC and {C,D} = CD +DC

Cj = I ⊗ · · · ⊗ C ⊗ · · · ⊗ I

η ∈ [0, 1] efficiency measurement.

Hj = H†
j : Free hamiltonien, Ĥ = Ĥ† : Controlled Hamiltonian

u scalar control function.

Associate measurement operator L ∈ MdN (C) for each particle.

Pairwise interaction between particles : A of Hilbert-Schmidt form with kernel
a i.e,

A : L2(X2;C) → L2(X2;C)

Af((x, y)) :=

∫
X2

a(x, y, x′, y′)f(x′, y′)µ(dx′)µ(dy′), ∀f ∈ L2(X2;C).

a(l, l′, k′, k) = a(l′, l, k, k′) and a(l, l′, k, k′) = a(l, l′, k, k′)
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Quantum Feedback Control

Quantum propagation of chaos

Ansatz :
The density matrix in QM plays same role of classical distribution

ρN
t ≈ γt ⊗ · · · ⊗ γt

Mean-Field Belavkin equation :

dγt = (−i[H + u(γt)Ĥ +Amt , γt])dt+
(
LγtL

† − 1

2
{L†L, γt}

)
dt

+
√
η
(
γtL

† + Lγt − tr
(
(L+ L†)γt

)
γt

)
dWt, (1)

dYt = dWt +
√
ηtr

(
(L+ L†)γt)

)
dt

where

mt := E[γt],
γ0 = ρ0 ∈ S(H),

Am(l, l′) =
∑

X2 a(l, l′; k, k′)m(k, k′),

η ∈ [0, 1].
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Mean-Field Belavkin equation

Theorem

Theorem (Well posedness and propagation of Chaos)

Let T > 0, U > 0, and let u : S(H) → [−U,U ] be bounded and Lipschitz, i.e.
|u(ρ)− u(ρ′)| ≤ κ ‖ρ− ρ′‖, with κ > 0. Then (1) is well posed and valued in S(H).
Furthermore for η = 1, there exists a constant c ≡ c(‖A‖, ‖Ĥ‖, ‖L‖) such that

E
[
αN (t)

]
≤ ect

(
αN (0) +

1√
N

)
,

Where ‖ · ‖ corresponds to any matrix norm.

αN (t) := αN,1(t) = 1− tr(γ1
tρ

N
t

)

Sofiane CHALAL, Nina H. AMINI, Gaoyue GUO (CentraleSupélec, Université Paris-Saclay)Quantum mean-field filtering and control February 15, 2024 15 / 25



Mean-Field Belavkin equation

Sketch of proof

Well-posdness :
For each ξ ∈ C

(
[0, T ],S(H)

)
, consider

dγξ
t = −i[F ξ

t , γ
ξ
t ]dt+

(
Lγξ

tL
† − 1

2

{
L†L, γξ

t

})
dt

+
√
η
(
γξ
tL

† + Lγξ
t − tr

(
(L+ L†)γξ

t

)
γξ
t

)
dWt, (2)

where F ξ
t := H + utĤ +Aξt .

The control u in open-loop i.e u(γξ
t ) = ut

Sofiane CHALAL, Nina H. AMINI, Gaoyue GUO (CentraleSupélec, Université Paris-Saclay)Quantum mean-field filtering and control February 15, 2024 16 / 25



Mean-Field Belavkin equation

Sketch of proof

Lemma (Linear Belavkin equation)

The following linear equation is well-posed in set of matrices and preserve positivity

dγ̃ξ
t = −i[F ξ

t , γ̃
ξ
t ]dt+

(
Lγ̃ξ

tL
† − 1

2

{
L†L, γ̃ξ

t

})
dt

+
√
η
(
γ̃ξ
tL

† + Lγ̃ξ
t

)
dYt, (3)

Moreover equation (2) has unique solution γξ
t = γ̃ξ

tr(γ̃ξ)
a

aSet of nonnegative nonzero matrices is invariant for γ̃, which implies that tr(γ̃) > 0, ∀t

Lemma

Equation (2) with ut = u(γt), u ∈ C1, and γξ
0 = γ0 ∈ S(H) has a unique strong

solution.
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Mean-Field Belavkin equation

Sketch of proof

From the existence of the family of equations parametrized by ξ, define the
mapping Ξ : C

(
[0, T ],S(H)

)
→ C

(
[0, T ],S(H)

)
by Ξ(ξ) := (E[γξ

t ])0≤t≤T .
The process γm corresponds to the solution of (1) if and only if m = Ξ(m).

The existence and uniqueness by showing that the mapping Ξ has a unique fixed point
i.e the map Ξ is a contraction with respect to the uniform norm on C

(
[0, T ],S(H)

)
.
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Mean-Field Belavkin equation

Sketch of proof - Part 2

Propogation of chaos :
The main measures of the deviation of the solutions of (ρN

t )t≥0, to N -particle
systems from the product of the solutions to the MF-equation are the following :

EJ
N (t) := 1− tr(γJ

t ρ
J
t )

Where, J ⊂ JN := {1, . . . , N} we denote
ρJ = trJN/J(ρ

N ) and γJ =
⊗

j∈J γ

Lemma (Pickl (2011) - Kolokoltsov (2022))

E
[
EJ
N (t)

]
≤ |J |E[αN (t)]

where,

αN,j(t) = 1− tr
(
γtρ

j
t

)
= 1− tr(γj

tρ
N
t

)
here, γj := I⊗ · · · ⊗ γ ⊗ · · · ⊗ I.
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Mean-Field Belavkin equation

Sketch of proof - Part 2

Very briefly use Itô formula : γ := γj , L := Lj . By Itô’s formula, get

dαN (t) = −tr
(
dρN

t γt

)
− tr

(
ρN
t dγt

)
− tr

(
dρN

t dγt

)
.

=
(
P

(1)
t + P

(2)
t )dt+

∑
k

P
(3,k)
t dW k

t ,

P
(1)
t = itr

([ 1

N

∑
k ̸=j

Akj − Amt
j

+
(
u(ρ

j
t ) − u(γt)

)
Ĥ, I − γt

]
ρ
N
t

)

P
(2)
t =−tr

(
γtLρ

N
t L†+ γtL

†
ρ
N
t L + γtL

†
ρ
N
t L† + γtL + ρ

N
t L

)
+

[
tr

(
γtρ

N
t L† + γtLρ

N
t

)
tr

(
γt(L

†
+ L)

)
+

tr
(
γtρ

N
t L† + γtLρ

N
t

)
tr

(
ρ
N
t (L† + L)

)
−

tr
(
ρ
N
t γt

)
tr

(
ρ
N
t (L† + L

))
tr

(
γt(L + L†)

)]
,

and P
(3,k)
t are bounded quantities.

By taking an expectation of the above equation and using several fastidious
estimates lemmas,

dE[αN (t)]

dt ≤
(
C‖A‖+ κ‖Ĥ‖

)
E[αN (t)] +

C√
N

+ C ′‖L‖2E[αN (t)].

The proof is fulfiled by classical Gronwall inequality.
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Application to quantum state preparation

Application - Stabilization

Consider the case of N -qubit system 1. With A = a†1a2 + a†2a1.
2 A(l, l′; k, k′)

such that A(2, 1; 1, 2) = A(1, 2; 2, 1) = 1 and zeros otherwise. For each
particle we associate a free Hamiltonian Hj = σz

j , an observation channel
Lj = σz

j and a controlled Hamiltonian Ĥj = σx
j .

dρN
t =− i[Ht,ρ

N
t ]dt+

N∑
j=1

(
σz

jρN
t σz

j − ρN
t

)
dt

+
√
η

N∑
j=1

(
ρN
t σz

j + σz
jρN

t − 2tr
(
σz

jρN
t

)
ρN
t

)
dW j

t .

σx :=

(
0 1
1 0

)
, σy :=

(
0 −1
1 0

)
, σz :=

(
1 0
0 −1

)

1X = {1, 2}
2Where a†j and aj are the creation and annihilation operators respectively for the j-th qubit.
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Application to quantum state preparation

Application - Stabilization

For the MF equation straightforward calculations in Pauli basis give us

Am =
(

0 E[x] − iE[y]
E[x] + iE[y] 0

)
.

MF Belavkin equation projected in Pauli basis is represented as follows:

dxt =
(
− yt − xt + ztE[yt]

)
dt−√

ηxtztdWt,

dyt =
(
xt − yt + u(γt)zt − ztE[xt]

)
dt+√

ηytztdWt,

dzt =
(
− u(γt)xt + ytE[xt] + xtE[yt]

)
dt+√

η
(
1− z2t )dWt.

We note {ρe, ρg}

ρg :=

(
1 0
0 0

)
, ρe :=

(
0 0
0 1

)
,

the matrices are the equilibrium points of the MF-equation.
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Application to quantum state preparation

Application - Stabilization

Studying the asymptotic behavior of system.

Figure: quantum states reduction, when u ≡ 0

Figure: fidelity with feedback, when u(γ) := −7.6itr
(
[σx, γ]ρe

)
+ 5

(
1− tr(γρe)

)
Sofiane CHALAL, Nina H. AMINI, Gaoyue GUO (CentraleSupélec, Université Paris-Saclay)Quantum mean-field filtering and control February 15, 2024 23 / 25



Further research

Further research

1 Establish a rigorous mean-field convergence result in terms of density matrices.
2 Stable numerical scheme based on Krauss Map + Particle Methods
3 Extension of QMFG in heterogenous case 7→ Graphon Quantum Games ?
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