Robotic Spacecraft Rendezvous with a Tumbling Target for Capture: Robust Methods for Planning and Control

Dr. Roberto Lampariello Leader of On-Orbit Servicing Operations and Validation Team Institute of Robotics and Mechatronics German Aerospace Center (DLR)

Plateau de Saclay Automatic Control Seminar Laboratory of Signals and Systems (L2S) CNRS, Centrale Supélec and University of Paris-Saclay 14th March 2024

Knowledge for Tomorrow

- On-orbit servicing
 - Approaching, grasping and stabilizing defective non-cooperative tumbling satellites for repair

DEOS mission study (DLR) - 2015

- On-orbit servicing
 - Approaching, grasping and stabilizing defective non-cooperative tumbling satellites for repair
 - Heading towards life-extension, on-orbit assembly, reconfiguration

Life-extension concept Northrop Grumman

MISROR ESA, 2020-22

OSAM-1 (NASA, cancelled)

- On-orbit servicing
- Active Debris Removal
 - Approaching, grasping and stabilizing defective non-cooperative tumbling satellites *for deorbiting*

Space debris in Earth orbit

- On-orbit servicing
- Active Debris Removal
 - Approaching, grasping and stabilizing defective non-cooperative tumbling satellites for deorbiting
 - New challenges: flight synchronization and communication link obstruction

ENVISAT satellite e.Deorbit mission study ESA - 2016

ClearSpace-1 (ESA) - 2026

- On-orbit servicing
- Active Debris Removal
- Astronaut assistance
 - Intravehicular activities on ISS (ongoing) and future private stations
 - Dealing with cluttered, unstructured, partly unknown environments

ASTROBEE on the ISS (NASA), 2020

Lunar Gateway (NASA), > 2026

Project ION – Impuls Orbitale Nachhaltigkeit DLR, 2023-25

- Research in orbital sustainability and circular economy
- Extended pipeline with debris evaluation from ground
- Methods to enhance software TRL:
 - Representative SW
 environment
 - Tests on OBC
 - Robustness
 - SW V&V for space

Problem statement: autonomous capture of a free-tumbling target satellite

- Vast literature on related robot control problems
 [Papadopoulos, *et al*, Frontiers in Robotics and AI, 2021]
 - Chaser rendezvous phase
 - Robot approach phase
 - Robot capture phase
 - Robot post-capture phase
- Scenarios

• ...

- Size of target satellite
- Geometry
- Tumbling rate

Problem statement: autonomous capture of a free-tumbling target satellite

Servicer at Mating Point in reach of Grasping Point for capture.

Servicer at Observation Point in front of tumbling ENVISAT.

Chaser rendezvous phase

What is the typical motion of a grasping point on a tumbling target?

• Dynamics $\overline{\overline{I}}$. $\dot{\overline{\omega}} + \overline{\omega} \times \overline{\overline{I}}$. $\overline{\omega} = \overline{\tau} = 0$, initial conditions of angular velocity ω (0) = [-2, -4, -2] deg/sec

Simulation time: 5000 sec (approx. 1 Low-Earth orbit)

What is the typical motion of a grasping point on a tumbling target?

• Dynamics $\overline{\overline{I}}$. $\overline{\overline{\omega}} + \overline{\omega} \times \overline{\overline{I}}$. $\overline{\omega} = \overline{\tau} = 0$, initial conditions of angular velocity ω (0) = [-4, -2, -4] deg/sec

Simulation time: 5000 sec (approx. 1 Low-Earth orbit) x4

Target dynamics estimation and motion prediction – peculiarities of given problem

- Angular velocity in body frame is periodic ω^{BF}
- For a rigid body in free motion, given the two motion constants

 $H^2 = \sum I_i^2 \omega_i^2$ and $2T = \sum I_i \omega_i^2$, $I_3 < I_2 < I_1$ and defining $D = H^2/2T$

it can be shown that the polhode period

$$T_{\rm p} \rightarrow \infty \text{ as } D \rightarrow I_2$$

• Due to slow internal energy dissipation, a general tumble will end up in a flat spin, i.e. a pure spin about principal major axis

 $\overline{\overline{I}}.\,\overline{\dot{\omega}}+\overline{\omega}\times\overline{\overline{I}}.\,\overline{\omega}=\tau=c\left(\widehat{H}\widehat{H}-\overline{\overline{u}}\right).\,\overline{\omega}$

Body inertia I = diag(29.2 35 38.4) kg m²

D (solid black), kinetic energy T (red) and polhode period T_p (green) shown during a decaying motion to a flat spin

Target dynamics estimation and motion prediction

Goal

Long-term prediction of Target motion, in the order of 60 to 600 seconds

Method

- Observe Target for time T_{obs}
- Generate pose estimates
- Identify Target inertia and state
- Predict Target motion for time T_{pred}

[Lampariello, et al, JGCD 2021]

Experimental pose estimates

OOS-SIM facility

Camera image sequence

Inertia and state identification

• Nonlinear LS:

with

$$\begin{split} \left[\hat{\mathbf{l}}, \hat{\mathbf{q}}(t_0), \hat{\boldsymbol{\omega}}(t_0) \right] &= \min_{\left[\mathbf{l}, \mathbf{q}(t_0), \boldsymbol{\omega}(t_0)\right]} \sum_{i=1}^{N} \left\| \mathbf{q}_{\mathbf{v}} \left(t_i; \mathbf{l}, \mathbf{q}(t_0), \boldsymbol{\omega}(t_0) \right) - \widehat{\mathbf{q}_{\mathbf{v}}}(t_i) \right\|_2 \\ \mathbf{q}(t) &= \int_0^{T_{\text{obs}}} C(\mathbf{q}(t)) \boldsymbol{\omega}(t) dt + \mathbf{q}(t_0) \text{ and } \qquad \boldsymbol{\omega}(t) = \int_0^{T_{\text{obs}}} \mathbf{I}^{-1}(\boldsymbol{\omega} \times \mathbf{I}\boldsymbol{\omega}) dt + \boldsymbol{\omega}(t_0) \\ I_{ii} &> 0, i \in (1, 2, 3) \qquad I_{ii} + I_{jj} > I_{kk}, i \neq j \neq k \in (1, 2, 3) \qquad \| [\widehat{\mathbf{q}}(t_0), \mathbf{q}^*(t_0)] \|_2 < \delta \end{split}$$

- Comparison to LS [Sheinfeld and Rock, 2009]: batch method, requires Target angular velocity
- Comparison to Extended Kalman Filter [Aghili 2009]: recursive method, assumes Gaussian noise
- Applied to five representative tumbling states of the Target, to include (close to) flat spin and perfect sphere

Motion Prediction for predefined grasping point

• IVP: $\mathbf{q}(t) = \int_0^{T_{\text{pred}}} C(\mathbf{q}(t)) \boldsymbol{\omega}(t) dt + \hat{\mathbf{q}}(t_0) \text{ and } \boldsymbol{\omega}(t) = \int_0^{T_{\text{pred}}} \hat{\mathbf{I}}^{-1} (\boldsymbol{\omega} \times \hat{\mathbf{I}} \boldsymbol{\omega}) dt + \hat{\boldsymbol{\omega}}(t_0)$

• Dispersion characterization through propagation of Monte Carlo identification results

Optimal control-based approach

Advantages

- motion constraints
- improved performance

Application

Planetary powered landing

Spacecraft rendezvous

Planetary entry

Asteroid landing

Fuel-optimal rocket landing

Space robot trajectory planning

Attitude control

Missile guidance

- run-time
- convergence
- robustness
- V&V VV4RTOS [P. Lourenco et al., ESA GNC-ICATT 2023]

0.0 x 0.5 1.0

Optimal control based approach – NLP formulation and resolution

 $\min_{\mathbf{t}_{f},\mathbf{q}(t),\mathbf{\tau}(t)}\Gamma(\mathbf{t}_{f},\mathbf{q}(t),\mathbf{\tau}(t))$ $\mathbf{g}(\mathbf{t}_{\mathrm{f}},\mathbf{q}(t),\mathbf{\tau}(t)) = 0$ $\mathbf{h}(\mathbf{t}_{\mathrm{f}},\mathbf{q}(t),\mathbf{\tau}(t)) \leq 0$ $0 \leq t \leq t_f$ $\Gamma = \int_0^{t_f} \mathbf{\tau}^2 \, dt$ or $\int_0^{t_f} (\mathbf{\tau}^T \, \dot{\mathbf{q}})^2 dt$ $\Gamma = t_f$ [Park, 2004] $\Gamma = \max \min(\text{TTC}(\mathbf{q}))$

 $t_0 < t_1 < t_2 \dots < t_{N_{via}-1} < t_f$

Active-set - NLOPT [Kraft, 1994] - OCPID-DAE1 [Gerdts, 2013] Interior Point - IPOPT

First-order

- Gusto [Bonalli, 2019]
- SCvx [Mao, 2018]
- Convexification [Liu, 2017]
- GPUs [Chretien, 2016]
- Regularization
 [Khadiv, Righetti, 2020]

Chaser rendezvous phase – problem statement

Compute feasible trajectory ${}^{o}\vec{x}_{p}(t) \in \mathbb{R}^{6}$ to given Mating Point \bigotimes and track it in view of uncertainties

Chaser rendezvous phase – optimal control

$$\min_{\mathbf{r}^{0} \in \mathbb{R}^{3}} \Gamma = \int_{0}^{t_{f}} \left(\mathbf{F}^{0 \mathrm{T}} \dot{\mathbf{x}}^{0} \right)^{2} \mathrm{dt}$$
$${}^{\mathrm{t}} \mathbf{x}^{\mathrm{MP,C}}(\mathrm{t}_{\mathrm{f}}) = \left(\mathbf{t} \mathbf{x}_{\mathrm{des}}^{\mathrm{MP,C}} \right)$$
$${}^{0} \ddot{x}^{0}(t) \ge 0 \quad if \quad \| {}^{\mathrm{t}} \mathbf{r}^{\mathrm{t},0} \| \le \| {}^{\mathrm{t}} \mathbf{r}^{\mathrm{t},0} \|_{\mathrm{min}}$$

 $\mathbf{PD}(t) \le 0$

$$\dot{\mathbf{x}}_{\min}^0 \leq \dot{\mathbf{x}}^0(t) \leq \dot{\mathbf{x}}_{\max}^0 \quad \mathbf{F}_{\min}^0 \leq \mathbf{F}^0(t) \leq \mathbf{F}_{\max}^0$$

- nonlinear problem
- convexification [Virgili-Llop, et al, IJRR, 2019]
- warm starting with LUT: $\mathbf{p} = f(\mathbf{p}_{task}), \mathbf{p}_{task} \in \mathbb{R}^{4 \times 1}$
- input from motion prediction is uncertain

Scenario with convex hull modelling

Chaser rendezvous phase – uncertainty and tube-based MPC

Nominal case

$${}^{t}x_{p}(t) = \mathcal{R}^{to}\left(\phi_{t}(t,\omega_{t}(t))\right){}^{o}x_{p}(t)$$

Perturbed case

$${}^{o}x_{p}'(t) = \mathcal{R}^{ot}\left(\phi_{t}(t,\omega_{t}(t)+\delta\omega_{t}(t))\right){}^{t}x_{p}(t)$$

Tube-based MPC:

- perturbed linear system $\dot{x}_{k+1} = Ax_k + Bu_k + w_k$
- known bounded set $w \in \mathbb{W}$
- constraints $x \in X$, $u \in U$

Chaser rendezvous phase – Tube-based MPC method and solution

Solve MPC problem for nominal unperturbed system

$$\dot{z}_{k+1} = \mathbf{A} z_k + \mathbf{B} v_k$$
$$z \in \mathbb{Z}, \ v \in \mathbb{V}$$

 $u = v + K_{dr}(x - z)$

Robust control law

with

Uncertainty generates a tube of trajectories contained in an RPI, $\pmb{\mathcal{Z}}$

Constraint tightening

$$\mathbb{Z} = \mathbb{X} \ominus \boldsymbol{\mathcal{Z}} \qquad \mathbb{V} = \mathbb{U} \ominus \mathrm{K}_{\mathrm{dr}} \boldsymbol{\mathcal{Z}}$$

Chaser rendezvous phase – TumbleDock/ROAM Mission on ISS (DLR/MIT/NASA)

Demonstrate approach maneuvers with two ASTROBEEs

TumbleDock scenario

Albee, *et al*, Frontiers Robotics and AI, 2021 Albee, *et al*, ASTRA, 2022

TumbleDock/ROAM: Motion Planning for Rendezvous

13 motion planner calls,
 13 motion plans generated,
 100% motion plan generation

	Mean	Max	Min
Run time [s]	9.16	14.58	6.26
Chaser initial offset [m]	0.245	0.605	0.004

- Highlighted call (right):
 - ➢ Generated in 8.45 [s]
 - Chaser initial position ~0.3 [m] from expected position

Tracking of Inertial Frame Reference Trajectory

100% motion plan generation success rate

TumbleDock/ROAM: Model-Based EKF

• On-orbit validation: Closed-loop control with EKF at 62.5 [Hz]

ISS

Environment

Localization

Pipeline

 \mathbf{F}_i ,

Astrobee

Dynamics

Model-based $\mathbf{\tilde{x}}_{Ii}$

EKF

- Successful: 19/20 runs (Target Astrobee)
- Key features:

 $\bar{\mathbf{X}}_{Ii}$

➢ Outlier rejection

Controller

 $\hat{\mathbf{F}}_{i}$

 $\hat{\mathbf{x}}_{Ii}$

➢ Disturbance estimation

Localization discontinuities

Robust and accurate model-based control in presence of outliers and disturbances

Free-floating Robot Dynamics

• Equations of motion

$$\begin{bmatrix} \boldsymbol{M}_{b}(\boldsymbol{q}) & \boldsymbol{M}_{bm}(\boldsymbol{q}) \\ \boldsymbol{M}_{bm}^{\mathrm{T}}(\boldsymbol{q}) & \boldsymbol{M}_{m}(\boldsymbol{q}) \end{bmatrix} \begin{bmatrix} \ddot{\boldsymbol{x}}_{b} \\ \ddot{\boldsymbol{q}} \end{bmatrix} + \boldsymbol{C}(\boldsymbol{q}, \dot{\boldsymbol{q}}, \dot{\boldsymbol{x}}_{b}) = \begin{bmatrix} \boldsymbol{0} \\ \boldsymbol{\tau} \end{bmatrix}$$

 $\dot{\boldsymbol{x}}_b \in \mathbb{R}^6, \boldsymbol{q} \in \mathbb{R}^n, \boldsymbol{\tau} \in \mathbb{R}^n$ $\boldsymbol{M}_b \in \mathbb{R}^{6x6}, \boldsymbol{M}_{bm} \in \mathbb{R}^{6\text{xn}}$

- Conservation of momentum, H
 - $\boldsymbol{M}_b \ \dot{\boldsymbol{x}}_b + \boldsymbol{M}_{bm} \dot{\boldsymbol{q}} = \boldsymbol{H} = \boldsymbol{0}$
- Free-floating robot kinematics

 $\dot{\boldsymbol{x}}_e = \boldsymbol{J}_q(\boldsymbol{q}; \boldsymbol{M}_b, \boldsymbol{M}_{bm}) \, \dot{\boldsymbol{q}}$

- generalized Jacobian matrix $J_g(q)$

$$\begin{split} \mathbf{m}^{\text{sys}} \mathbf{v}^{\text{CM}} &= \mathbf{f}^{\text{CM}} \\ \mathbf{\dot{L}} &= \mathbf{\tau}^{\text{CM}} \\ \mathbf{\Lambda} \ddot{\mathbf{x}}^{\text{e}} + \mathbf{\mu}_{\text{CM}}^{*} = \mathbf{F}^{\text{e}} + \mathbf{J}_{\text{g}}^{+\text{T}} \mathbf{\tau} + \mathbf{J}_{\text{e,CM}}^{*} \mathbf{F}^{\text{CM}} \end{split}$$

-CNA

ave CM

[Giordano, et al, 2017][Mishra, et al, 2023]

DEOS Mission Study (2015)

Robot capture phase – approach, capture and rigidization

Robot capture phase

$$\begin{split} \min_{\dot{\mathbf{q}}} \Gamma &= \int_{0}^{t_{f}} \left(\mathbf{\tau}^{T} \ \dot{\mathbf{q}} \right)^{2} dt \\ \mathbf{x}^{e}(\mathbf{t}_{f}) &= \int_{0}^{t_{f}} \mathbf{J}_{g} \ \dot{\mathbf{q}}(t) dt = \mathbf{x}^{e}_{des} \\ \\ \dot{\mathbf{x}}^{e}(\mathbf{t}_{f}) &= \mathbf{J}_{g} \ \dot{\mathbf{q}}(\mathbf{t}_{f}) = \dot{\mathbf{x}}^{e}_{des} \\ \end{split}$$

 $\dot{\mathbf{q}}_{\min} \leq \dot{\mathbf{q}}(t) \leq \dot{\mathbf{q}}_{\max} \ \mathbf{\tau}_{\min} \leq \mathbf{\tau}(t) \leq \mathbf{\tau}_{\max}$

- nonlinear non-holonomic problem
- warm starting with LUT: $\mathbf{p} = f(\mathbf{p}_{task}), \mathbf{p}_{task} \in \mathbb{R}^{4 \times 1}$
- input from motion prediction is uncertain

[Lampariello, et al, IROS 2013, RA-L2018], [Virgili-Llop, et al, IJRR, 2019], [Agrawal, Tran. Aut. Contr., 2009]

 $t_0 < t_1 < t_2 \dots < t_{N_{vin}-1} < t_f$

Approach NLP

Warm starting with Machine-Learning Regression

- Goal numerical optimization
 - Monte Carlo search for optimal solutions
 - Training set generation for discretized task space
 - Reduced problem for real-time planning
- Goal machine learning
 - Generalization via regression of input-output mapping p_t ⇒ p_{NLP}

Lampariello, *et al*, ICRA 2011, ICRA 2013, 2015 [Lembono, *et al*, RAL2020], [Tenhumberg, *et al*, IROS 2022]

On-Board System Architecture for Approach and Grasping Phases

[Lampariello, et al, RA-L2018]

Robot capture phase – uncertainty

Robot capture phase – real-time control through sensitivity-based updates

Consider again a parametric $NLP(\mathbf{p}_t)$

Given a nominal solution $\hat{z}(\hat{\mathbf{p}}_t)$, the Sensitivity Theorem states that – there exists a neighborhood of validity about $\hat{\mathbf{p}}_t$

- conduct sensitivity analysis to obtain $\frac{d\hat{z}}{dp}(\hat{\mathbf{p}}_t)$

such that, for a perturbed parameter $\mathbf{p}_t \neq \widehat{\mathbf{p}}_t$, compute $\overline{z}(\mathbf{p}_t)$ from Taylor approximation

$$\bar{z}(\mathbf{p}_{t}) = \hat{z}(\widehat{\mathbf{p}}_{t}) + \frac{d\hat{z}}{dp}(\widehat{\mathbf{p}}_{t})(\mathbf{p}_{t} - \widehat{\mathbf{p}}_{t}) + o(\|\mathbf{p}_{t} - \widehat{\mathbf{p}}_{t}\|)$$

 \rightarrow real-time optimal control via sensitivity analysis

[Specht, Gerdts, Lampariello, ECC 2020]

Pros

- Much reduced computational expense
- Real-time capable in most applications

Cons

- Valid locally in some Neighbourhood
- Know neighbourhood exists, but not size
- Valid within the region where the active constraint set does not change

Robot capture phase – estimate of neighborhood of validity

NLP(p_t): min $J(z(p_t), p_t)$ $z \in \mathbb{R}^{n_z}$ subject to $G_i(z(p_t), p_t) \le 0, i = 1, ..., n_G$ $H_j(z(p_t), p_t) = 0, j = 1, ..., n_H$

Assuming Lipschitz continuity, then

$$|G(z(\mathbf{p}_{t}),\mathbf{p}_{t}) - G(z(\hat{\mathbf{p}}_{t}),\hat{\mathbf{p}}_{t})||_{q} \leq L_{G} ||z(\mathbf{p}_{t}) - z(\hat{\mathbf{p}}_{t})||_{q} + L_{p} ||\mathbf{p}_{t} - \hat{\mathbf{p}}_{t}||_{q}$$

and

$$\|G(z(p_{t}), p_{t}) - G(z(\hat{p}_{t}), \hat{p}_{t})\|_{q} \leq L_{G} L_{z} \|p_{t} - \hat{p}_{t}\|_{q} + L_{p} \|p_{t} - \hat{p}_{t}\|_{q}$$

The sensitivity theorem is only valid on a consistent active constraint set, so we can derive a conservative boundary for the Neighborhood

 $G_i(z(\mathbf{p}_t), \mathbf{p}_t) \le G_i(z(\hat{\mathbf{p}}_t), \hat{\mathbf{p}}_t) + (L_G L_z + L_p) \|\mathbf{p}_t - \hat{\mathbf{p}}_t\|_q \le 0, \qquad i \notin A(\hat{z}(\hat{\mathbf{p}}_t), \hat{\mathbf{p}}_t) \quad \text{- active constraint set}$

or

$$\|\mathbf{p}_{t} - \hat{\mathbf{p}}_{t}\|_{q} \leq \frac{1}{L_{G}L_{z} + L_{p}} \min_{i \notin A(\hat{z}(\hat{p}_{t}), \hat{p}_{t})} \{-G_{i}(z(\hat{p}_{t}), \hat{p}_{t})\}$$

- L_G , L_z and L_p estimated from sensitivity analysis

Robot capture phase – neighborhood of validity for 2D example

Example: two-link planar arm, point-to-point motion

Parameter $p_t = q(t_f) = [q^1, q^2]$

Model

Two active set groups

Performance analysis

Robot capture phase

$$\dot{\mathbf{q}}(t) = \mathbf{J}_{g}^{-1} \dot{\mathbf{x}}_{des}^{e}(t)$$
$$\mathbf{q}(t) = \int_{0}^{t} \mathbf{J}_{g}^{-1} \dot{\mathbf{x}}_{des}^{e}(t) dt$$

 $\begin{aligned} \mathbf{PD}(t) &\leq 0 & \mathbf{q}_{\min} \leq \mathbf{q}(t) \leq \mathbf{q}_{\max} \\ \dot{\mathbf{q}}_{\min} &\leq \dot{\mathbf{q}}(t) \leq \dot{\mathbf{q}}_{\max} & \mathbf{\tau}_{\min} \leq \mathbf{\tau}(t) \leq \mathbf{\tau}_{\max} \end{aligned}$

– Jacobian inverse J_g^{-1}

Singularity Map of a Free-floating Robot

 $\dot{\mathbf{q}}(t) = \mathbf{J}_{g}^{-1}(\mathbf{q}; \mathbf{M}_{b}, \mathbf{M}_{bm}) \, \dot{\mathbf{x}}_{des}^{e}(t)$

- Dynamic Singularities [Papadopoulos, 1993]
 - Path dependent
 - Independent of last robot arm joint position
- Generation of a singularity map in robot joint space with Interval Arithmetic or Taylor Models

-2

-4 L 0

2

x

(a) 1^{st} iteration

6

- Completeness
- Lipchitz continuity

[Calzolari, Lampariello, Giordano, RSS 2020]

x

(b) 2^{nd} iteration

6

2

x

(c) 3^{rd} iteration

6

0

2

-2

0

EROSS IOD (EU, 2021-24)

Concept

DLR.de • Chart 38 R. Lampariello, L2S, Paris, March 2024

Past and On-going Activities for ADR

e.Deorbit (ESA, 2016)

Conclusions

- Robotics is considered a key technology for accomplishing servicing tasks, the first of which is the capture of a defective target satellite. New scenarios include those in space stations.
- Dynamics of the potentially tumbling targets favors the implementation of autonomous operational procedures for performing the capture
- Autonomy for capture: target motion prediction, motion planning, tube-based MPC for tracking
- On-going research on robust parametric optimal control and its V&V

Thank you for your attention!

