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(Sub-Riemannian type) control problem

Consider the controlled ODE
d .
dXe =Y _ Vi(Xo)u'(t)dt,  Xo=x€R"
i=1

and the problem, for a fixed y € R",
Find u € L?([0,1],RY) s.t. X; = y.
Under the Hormander bracket-generating condition,
Vz € R", Lie(V4,..., Vq), =R",

the classical Chow-Rashevskii theorem (1938) guarantees the existence
of such a control.

(Simplest example : Heisenberg group, i.e. d =2, n =3,

Vi = 0x — $0;, Vo = 0, + 50;. Corresponds to finding a planar path
with fixed endpoints and prescribed area.)
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Gradient flow

Find u € L2([0,1],RY) s.t. X; = y.

This problem is classical in the (deterministic) control community
((non-holonomic) motion planning) with many applications
(robotics,...), and many specialized algorithms.

We are interested (see next section for motivation) in a very simple /
non-specific gradient flow procedure : consider

we L Lu) =y = X
and solve the gradient flow (in L2]0,1])

d
() = =V L(u(s)),

hoping that u(s) —s— 00 Uso a solution of the problem.

(Some gradient methods have already been considered in the control
literature, in particular the continuation method by Sussmann '93,
Sussmann and Chitour '96).
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Gradient flow : first properties

ueL? L) =y = X!z

d
() = =V L(u(s)),

e Good news : no strict local minimum for £ (under
bracket-generating condition).

Immediate computation :
VL(u(s)) = (y = X¢) 50 VXL,

e Bad news : in general, saddle points | possible at each control u
s.t. d,X; : L2 — R" is not onto. (singular controls in
sub-Riemannian geometry).

For instance, if d < n, u = 0 is always singular.
(duX1(0) only spans {V4(x),..., V4(x)}.)

o Other serious problem : no penalization term on v : — u(s) may

diverge to "infinity".
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Stochastic initial condition

The existence of saddle points means we cannot hope for convergence
from any starting point.
— what about for random initial condition ?

Singular controls are rare : for instance, one part of Malliavin ('78) 's
stochastic proof of Hérmander's theorem relies on the fact that

Ifu=W (white noise), then, a.s. , u is non-singular.

(More recently, rough path generalizations to other Gaussian processes,
e.g. Cass-Friz '10 and subsequent literature.)

Q : Does stochasticity / roughness of starting point help for the gradient
flow to converge ? (Or at least : to prove it that it does)

Rest of the talk : (partial) answer to this question.
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Motivation from deep learning

@ Supervised learning :
given a map x € R" — y(x) € R" and probability measure p, want
to find @ in a certain class s.t.

&= /u(dx)|¢(x)*Y(X)‘2

is small. Typically, we only have access to finite
(xi, yi = y(xi))i=1,....n, and we instead try to minimize the empirical

loss
N Z|¢ XI yl

@ Deep residual neural networks :
®(x) = X;, where

Xo = x, Xiy1 = Xk + 6ko(Xk, 0k),
Can be seen as discretization of ODE
Xo = X, dXt = O—(Xtv Qt)dt

Many papers drawing on this connection.
(starting with E 17, Haber-Ruthotto '17, Chen et al. '18, ...)
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ResNets as Rough / Stochastic dynamics

Several people have suggested that ResNets should be understood via
S/RDE and not just classical ODE.

@ Cohen, Cont, Rossier, Xu 22 : empirical roughness of layer weights,
scaling limits.

@ Marion, Fermanian, Biau, Vert '22. Hayou '22 : SDE limits for
initialization choices
Xiy1 = Xi + L=Y26(X )Wy, W Gaussian N (0, /).

@ Bayer, Friz, Tapia '22 : (discrete) rough path bounds as a
robustness measure for ResNets.
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The N-point control problem

Consider o of the form o(X;,0;) = S0, 0i(X:)0..
For the ODE limit :
@ The problem of minimizing empirical loss can be written as

find 0 s.t. X1(0,x;)=yi, i=1,...,N. (%)

This is in fact a problem of the form introduced in the first section,
but in M = (R")N\ A.

@ Question studied by control-theoretic methods by several people
(Agrachev-Sarychev '21, Scagliotti '22,...)
In particular, Cuchiero, Larsson, Teichmann '21 : There exist d =5
fixed explicit vector fields s.t. for any arbitrary N, there exists a
solution to ().



Motivation from deep learning
0000e

Motivating question : training of ResNets via gradient
descent

Q : Can we obtain theoretical results guaranteeing convergence of
(stochastic) gradient descent for ResNets 7 Does stochasticity/ roughness
of the initial condition help 7 (and what about generalization ?)

Note : we are considering a regime where depth is large but width is
fixed, whereas most results in the ML literature require some relation
between width n and data size N.

(when d = # parameters per layer < nN = # data dimension
~ sub-Riemannian control problem.)

(No answers in this talk !)
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Irregular controls

We want to consider (replacing u by z = [; udt € C([0,1],RY)) a
solution to

Xy = x+ /Ot V(Xs)dzs (1)

where z : [0,1] — RY is irregular (e.g. Brownian motion).
Note : if z= B(w) is a
Brownian path, then a.s. :

z is not absolutely continuous,

z only in C1/2—¢,

70'.6 70‘.4 70'.2 0.‘0 0:2 0.‘4 O.‘S 0.'8
Trajectory of a 2d Brownian motion.

But one can still make sense of (1) (4regularity of flow, etc) via 1t6
calculus (1950s), or rough path theory (Lyons '98).
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Rough path theory

We will formulate everything in the rough path (Lyons '98) framework :
For 1/3 < a <1/2, a C* rough path is the data of

t
z= (/ dz,, / dz,, ® dzu1>
s s<up Su Kt s<t

satisfying some algebraic and Holder-type analytic conditions.
(similar definition for arbitrary 0 < a with more iterated integrals :

zecaQQTLGM“MRﬂp.

For .
Xe = x +/ V(Xs)dzs,
0
the map
z— X

is then continuous (for the corresponding "rough path” topology), under
suitable regularity assumptions on the coefficients V.
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Rough path translation

In our setting, we will want to consider
zZ=w-+h

where w is the initial condition (irregular, a C* rough path), and h is in
the tangent space H = H([0, 1], RY).

Note that for any such w, h, we can define canonically the "sum” w & h
by letting

/(W@h)d(w@h):/de+/wdh+/hdw+/hdh.

(This follows from H C C1=v).

The map (w, h) — w @ h is then smooth.
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The gradient flow setup

We fix :
e Vi,..., Vy smooth, bracket-generating vector fields on R".
e initial condition : w, a C%([0, 1], R?)-geometric rough path,
O<ax<l

e tangent space : a Hilbert space H = H([0, 1], R9)
and consider the RDE

dxh = D> ViX)d(we  by), Xo = x.

For g = 1| - —y|?, the map
heHs Lo(h) =g (xlw:”)

is smooth. In particular, we can consider the gradient flow trajectory
d
ds
which defines a trajectory (h(s))s > o with values in H.

(Remark : rough path theory is definitely much more convenient than 1té
calculus here, even if w is a Brownian motion !)

h(0) =0, —-h(s) = =V Ly (h(s))
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Main result 1 (qualitative)

Let Vi,..., Vy be C3° bracket-generating vector fields on R". Let
w = B(w) where B is a Brownian motion.

Then, almost surely :

(1) There exists h € H such that L,,(h) = 0.

(2) For any h in H, w + h is not a saddle-point, i.e.

VLy(h)=0= L,(h)=0.

(3) If the trajectory (h(s))s > o is bounded in H, then convergence (to a
zero of L,,) holds in H.

Remarks :

@ the proof does not rely on precise regularity of B.M., would work for
any "nowhere-Lipschitz” initialization, e.g. fBm with any H € (0,1).
e For (2), a similar result holds for
£r(h) = [ p(dx) [y(x) = X (w & h)[?
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Main result 2 (convergence)

Assume that the V; are bracket-generating and step-2 nilpotent, i.e.
v’v.fv kv [VH [‘/J7 Vk]] =0.

Let w = B(w) where B is a Brownian motion.
Then, almost surely : for any choice of x,y € R",

lim h(s)=h" € H, withL,(h*)=0.

$§—00

Remarks :

@ In this case, the proof uses precise (ir)regularity of Brownian motion,
breaks down for more regular initial conditions.

@ We also have a convergence result in the "elliptic” case
(span{Vi(x)} = R",¥x).
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Elements of proof : true roughness

The qualitative result is based on Malliavin (78)’s proof, as extended to
the rough path setting (Hairer-Pillai "13, Friz-Shekhar '13).

Based on an irregularity property of w, which implies
/ ZfsidstEO = f' =0
0

In the rough path setting, this holds if w is a.e. truly S-rough for some
B < 2a,i.e. forae. sin[0,1],

‘Ws,t v _

= +00.

Y0 # v € R? limsup
tls |t —s|8

(Most classical stochastic processes, such as (fractional) Brownian
motion, satisfy this condition a.s.)
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Expressions for Vy L
Recall that for our gradient flow :

VaL(w; h) = (X" — y) mo VX",

A classical computation yields, for £ € R”,

e vaxzn| Z/ (o Vi(Xe) 20 €)° ot
where J;_,1 is the Jacobian matrix of the flow X; — Xi.

In addition, for any vector field W,

Tt W(Xe) = W(Xy) — / St [W, VII(Xe)d(w + )i
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True roughness = saddle-points are at infinity

An iteration then implies that, under the bracket-generating condition, if
w is truly rough, then

EER™\ {0} = £ -VuX0 £0.

To conclude, we use that this property is preserved for sufficiently regular
perturbations.

Let w be a.e. truly B-rough, and h € CI~°" | with % > 3, then w + h is
a.e. truly B-rough (in a suitable sense).

In particular, for w truly rough,

VheH, VL, (h)=0= L,(h) =0.
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Proof of convergence : tojasiewicz inequality

Consider a function L : H — R satisfying, for some ¢ > 0,
Vx e H, [(VL)(x)]® = AL(x). (t)
Then, for the gradient flow x(s) = —VL(x(s)), it holds that
o L(x(s)) < L(x(0))e™<"s converges to 0.

@ More importantly : x(5) —s— 00 Xoo, Where L(xx) = 0.
Proof : (tojasiewicz 1960's)

o {2vis) e [[1wia} <o

which implies that the trajectory (x(s);s > 0) has finite length, and,
in particular, converges (to a minimizer).



Results
00000000000e000000

Local tojasiewicz inequality

Proposition

Assume that L : H — R, satisfies,
Vx e H, [(VL)(x)]® > 2(|x|)L(x) (tloc)

where c(-) is decreasing, and satisfies [ c(r)dr = +oc.
Then for the gradient flow x(s) = —VL(x(s)), it holds that

X(S) —s—00 Xoo, Where L(xs) = 0.

.

Proof : (tojasiewicz’s argument again)

LI+ € (bol + [ @) b <o

with C = [; c. O

c

For instance, one can have c(r) = i
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Arguments of proof

In our case, we have, ,
IvLl,

;> c(wi h)?,

where
clwih)? = nf 6z Vo)1

1
—inf 3 /0 (i Vi(Xe) -0 €) it

l€l=1

where J;_,1 is the Jacobian matrix of the flow of X between t and 1.

(Familiar object from Malliavin calculus : c is the smallest eigenvalue of
the Malliavin matrix at w + h for the functional Xi).

We then need to prove
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Step-2 nilpotent case

@ The nilpotent hypothesis yields (letting z = Xi)

JeaVi(Xe) = Vi(z) - Z[Vj’ Vil(2)(w + hY, ;.

This yields
2
1
cwihz _inf S / dt | &+ (W + W)ea

P 0 j

e For w B.M,, (w)

C(w
w—hll 22— .
Pl 2 15

(This is a similar result to the fact that the norm of w in the Besov
space 821/020 is >1as.).
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Convergence for discrete approximations

The continuity properties of rough path theory allow for simple proofs of
convergence of discrete approximations.

For instance, assume that we know that for w a Brownian motion, the
g.f. solution h — h.(non-degenerate minimum) a.s.

For fixed N, let Hy ~ RN the space of piecewise linear controls, linear
on [i/N, (i +1)/N]. Let AV be the gradient flow :

d

ds

H¥(s) =~V L(H"(3)). H9(0) = =2y on /. (i + 1)/,

where the Zj; are i.i.d. (0, 1).
Then the convergence for B.M. implies

lim P (hV(s) =smioo Y
N— oo

with £(hY) =0) =1.
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Numerical experiment

Mean error over 100 runs

107 4

Average error

10—] 4

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
lterations

(rank d =10, n = 55 (step 2 nilpotent), 100 time points, learning
rate= 0.1)
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Numerical experiment

Mean error after 100 experiments

100 4 — fBM 0.85
fBM 0.7
—— fBM 0.6
— fBM 0.5
—— fBM 0.4
1 -1
‘é 0 — fBM 0.3
o
=
©
s
10-24
10—3 4
0 200 400 600 800 1000
Iterations

(rank d = 2, step 3 nilpotent (n =5), 100 time points, learning
rate= 0.1)
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Conclusion : (many) remaining questions
We are able to show convergence of gradient flow for the control problem
inf X1(h) — yI?

with rough (Brownian) initialization in the simplest non-trivial cases
(elliptic, step-2 nilpotent).
Roughness helps !

Can we do better ?

o Convergence for more general vector fields : Step-3 nilpotent,
arbitrary nilpotent, general case 7

o Convergence for discretized problems 7 (Quantitative discretized
roughness, number of steps vs. number of Lie brackets needed,...)

@ Variants of gradient descent ? (stochastic, ...)

@ Applications to Deep Learning ?
@ Other criteria than roughness 7
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