
Problem description Motivation from deep learning Results

Gradient flow on control space with rough initial
condition

Paul Gassiat

CEREMADE, Université Paris-Dauphine & DMA, ENS Paris

Séminaire d’Automatique du Plateau de Saclay
Janvier 2024

Joint work with Florin Suciu (Paris Dauphine)



Problem description Motivation from deep learning Results

Outline

1 Problem description

2 Motivation from deep learning

3 Results



Problem description Motivation from deep learning Results

Outline

1 Problem description

2 Motivation from deep learning

3 Results



Problem description Motivation from deep learning Results

(Sub-Riemannian type) control problem

Consider the controlled ODE

dXt =
d∑

i=1

Vi (Xt)u
i (t)dt, X0 = x ∈ Rn

and the problem, for a fixed y ∈ Rn,

Find u ∈ L2([0, 1],Rd) s.t. X1 = y .

Under the Hörmander bracket-generating condition,

∀z ∈ Rn, Lie(V1, . . . ,Vd)|z = Rn,

the classical Chow-Rashevskii theorem (1938) guarantees the existence
of such a control.
(Simplest example : Heisenberg group, i.e. d = 2, n = 3,
V1 = ∂x − y

2∂z , V2 = ∂y +
x
2∂z . Corresponds to finding a planar path

with fixed endpoints and prescribed area.)
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Gradient flow

Find u ∈ L2([0, 1],Rd) s.t. X1 = y .

This problem is classical in the (deterministic) control community
((non-holonomic) motion planning) with many applications
(robotics,...), and many specialized algorithms.
We are interested (see next section for motivation) in a very simple /
non-specific gradient flow procedure : consider

u ∈ L2 7→ L(u) = ∥y − X u
1 ∥

2
Rn ,

and solve the gradient flow (in L2[0, 1])

d

ds
u(s) = −∇L(u(s)),

hoping that u(s) →s→∞ u∞ a solution of the problem.
(Some gradient methods have already been considered in the control
literature, in particular the continuation method by Sussmann ’93,
Sussmann and Chitour ’96).
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Gradient flow : first properties

u ∈ L2 7→ L(u) = ∥y − X u
1 ∥

2
Rn ,

d

ds
u(s) = −∇L(u(s)),

Good news : no strict local minimum for L (under
bracket-generating condition).

Immediate computation :

∇L(u(s)) = (y − X u
1 ) ·Rn ∇X u

1 .

Bad news : in general, saddle points ! possible at each control u
s.t. duX1 : L2 → Rn is not onto. (singular controls in
sub-Riemannian geometry).
For instance, if d < n, u = 0 is always singular.
(duX1(0) only spans {V1(x), . . . ,Vd(x)}.)
Other serious problem : no penalization term on u : → u(s) may
diverge to ”infinity”.
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Stochastic initial condition

The existence of saddle points means we cannot hope for convergence
from any starting point.
−→ what about for random initial condition ?

Singular controls are rare : for instance, one part of Malliavin (’78) ’s
stochastic proof of Hörmander’s theorem relies on the fact that

If u = Ẇ (white noise), then, a.s. , u is non-singular.

(More recently, rough path generalizations to other Gaussian processes,
e.g. Cass-Friz ’10 and subsequent literature.)

Q : Does stochasticity / roughness of starting point help for the gradient
flow to converge ? (Or at least : to prove it that it does)

Rest of the talk : (partial) answer to this question.
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Motivation from deep learning
Supervised learning :
given a map x ∈ Rn 7→ y(x) ∈ Rn and probability measure µ, want
to find Φ in a certain class s.t.

E =

∫
µ(dx) |Φ(x)− y(x)|2

is small. Typically, we only have access to finite
(xi , yi = y(xi ))i=1,...,N , and we instead try to minimize the empirical
loss

Ê =
1
N

N∑
i=1

|Φ(xi )− yi |2 .

Deep residual neural networks :
Φ(x) = XL, where

X0 = x , Xk+1 = Xk + δkσ(Xk , θk),

Can be seen as discretization of ODE

x0 = x , dXt = σ(Xt , θt)dt

Many papers drawing on this connection.
(starting with E ’17, Haber-Ruthotto ’17, Chen et al. ’18, ...)
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ResNets as Rough / Stochastic dynamics

Several people have suggested that ResNets should be understood via
S/RDE and not just classical ODE.

Cohen, Cont, Rossier, Xu ’22 : empirical roughness of layer weights,
scaling limits.

Marion, Fermanian, Biau, Vert ’22. Hayou ’22 : SDE limits for
initialization choices
Xk+1 = Xk + L−1/2σ(Xk)Wk , W Gaussian N (0, Im).

Bayer, Friz, Tapia ’22 : (discrete) rough path bounds as a
robustness measure for ResNets.
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The N-point control problem

Consider σ of the form σ(Xt , θt) =
∑d

i=1 σi (Xt)θ
i
t .

For the ODE limit :
The problem of minimizing empirical loss can be written as

find θ s.t. X1(θ, xi ) = yi , i = 1, . . . ,N. (∗)

This is in fact a problem of the form introduced in the first section,
but in M = (Rn)N \∆.

Question studied by control-theoretic methods by several people
(Agrachev-Sarychev ’21, Scagliotti ’22,...)
In particular, Cuchiero, Larsson, Teichmann ’21 : There exist d = 5
fixed explicit vector fields s.t. for any arbitrary N, there exists a
solution to (∗).
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Motivating question : training of ResNets via gradient
descent

Q : Can we obtain theoretical results guaranteeing convergence of
(stochastic) gradient descent for ResNets ? Does stochasticity/ roughness
of the initial condition help ? (and what about generalization ?)

Note : we are considering a regime where depth is large but width is
fixed, whereas most results in the ML literature require some relation
between width n and data size N.

(when d = # parameters per layer < nN = # data dimension
≈ sub-Riemannian control problem.)

(No answers in this talk !)
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Irregular controls

We want to consider (replacing u by z =
∫ ·
0 utdt ∈ C ([0, 1],Rd)) a

solution to

Xt = x +

∫ t

0
V (Xs)dzs (1)

where z : [0, 1] → Rd is irregular (e.g. Brownian motion).

Trajectory of a 2d Brownian motion.

Note : if z = B(ω) is a
Brownian path, then a.s. :

z is not absolutely continuous,

z only in C 1/2−ϵ.

But one can still make sense of (1) (+regularity of flow, etc) via Itô
calculus (1950s), or rough path theory (Lyons ’98).
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Rough path theory

We will formulate everything in the rough path (Lyons ’98) framework :
For 1/3 < α ⩽ 1/2, a Cα rough path is the data of

z =

(∫ t

s

dzu,

∫
s ⩽ u1 ⩽ u2 ⩽ t

dzu2 ⊗ dzu1

)
s<t

satisfying some algebraic and Hölder-type analytic conditions.
(similar definition for arbitrary 0 < α with more iterated integrals :
z ∈ Cα

(
[0,T ],G ⌊α−1⌋(Rd)

)
).

For

Xt = x +

∫ t

0
V (Xs)dzs ,

the map
z 7→ X

is then continuous (for the corresponding ”rough path” topology), under
suitable regularity assumptions on the coefficients V .
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Rough path translation

In our setting, we will want to consider

z = w + h

where w is the initial condition (irregular, a Cα rough path), and h is in
the tangent space H = H1([0, 1],Rd).

Note that for any such w , h, we can define canonically the ”sum” w ⊕ h
by letting∫

(w ⊕ h)d(w ⊕ h) =

∫
wdw +

∫
wdh +

∫
hdw +

∫
hdh.

(This follows from H ⊂ C 1−var ).

The map (w , h) 7→ w ⊕ h is then smooth.
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The gradient flow setup

We fix :
V1, . . . ,Vd smooth, bracket-generating vector fields on Rn.
initial condition : w , a Cα([0, 1],Rd)-geometric rough path,

0 < α < 1.
tangent space : a Hilbert space H = H1([0, 1],Rd)

and consider the RDE

dXw ,h
t =

∑
i

V i (Xt)d(wt ⊕ ht), X0 = x .

For g = 1
2 | · −y |2, the map

h ∈ H 7→ Lw (h) := g
(
Xw ;h

1

)
is smooth. In particular, we can consider the gradient flow trajectory

h(0) = 0,
d

ds
h(s) = −∇HLw (h(s))

which defines a trajectory (h(s))s ⩾ 0 with values in H.
(Remark : rough path theory is definitely much more convenient than Itô
calculus here, even if w is a Brownian motion !)
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Main result 1 (qualitative)

Theorem
Let V1, . . . ,Vd be C∞

b bracket-generating vector fields on Rn. Let
w = B(ω) where B is a Brownian motion.
Then, almost surely :
(1) There exists h ∈ H such that Lw (h) = 0.
(2) For any h in H, w + h is not a saddle-point, i.e.
∇Lw (h) = 0 ⇒ Lw (h) = 0.
(3) If the trajectory (h(s))s ⩾ 0 is bounded in H, then convergence (to a
zero of Lw ) holds in H.

Remarks :
the proof does not rely on precise regularity of B.M., would work for
any ”nowhere-Lipschitz” initialization, e.g. fBm with any H ∈ (0, 1).
For (2), a similar result holds for
Lµ(h) =

∫
µ(dx) |y(x)− X x

1 (w ⊕ h)|2
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Main result 2 (convergence)

Theorem
Assume that the Vi are bracket-generating and step-2 nilpotent, i.e.

∀i , j , k , [Vi , [Vj ,Vk ]] ≡ 0.

Let w = B(ω) where B is a Brownian motion.
Then, almost surely : for any choice of x , y ∈ Rn,

lim
s→∞

h(s) = h∗ ∈ H, with Lw (h
∗) = 0.

Remarks :
In this case, the proof uses precise (ir)regularity of Brownian motion,
breaks down for more regular initial conditions.
We also have a convergence result in the ”elliptic” case
(span{Vi (x)} = Rn,∀x).



Problem description Motivation from deep learning Results

Elements of proof : true roughness

The qualitative result is based on Malliavin (78)’s proof, as extended to
the rough path setting (Hairer-Pillai ’13, Friz-Shekhar ’13).

Based on an irregularity property of w , which implies∫ ·

0

∑
i

f is dw
i
s ≡ 0 ⇒ f i ≡ 0.

In the rough path setting, this holds if w is a.e. truly β-rough for some
β < 2α, i.e. for a.e. s in [0, 1],

∀0 ̸= v ∈ Rd lim sup
t↓s

|ws,t · v |
|t − s|β

= +∞.

(Most classical stochastic processes, such as (fractional) Brownian
motion, satisfy this condition a.s.)
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Expressions for ∇HL

Recall that for our gradient flow :

∇HL(w ; h) = (Xw ;h
1 − y) ·Rn ∇HXw ;h

1 .

A classical computation yields, for ξ ∈ Rn,∥∥∥ξ · ∇HXw ;h
1

∥∥∥2

H
=

∑
i

∫ 1

0
(Jt→1Vi (Xt) ·Rn ξ)2 dt

where Jt→1 is the Jacobian matrix of the flow Xt 7→ X1.

In addition, for any vector field W ,

Jt→1W (Xt) = W (X1)−
∑
j

∫ 1

t

Jt→1[W ,V j ](Xt)d(w + h)it .
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True roughness ⇒ saddle-points are at infinity

An iteration then implies that, under the bracket-generating condition, if
w is truly rough, then

ξ ∈ Rn \ {0} ⇒ ξ · ∇HXw ;0
1 ̸= 0.

To conclude, we use that this property is preserved for sufficiently regular
perturbations.

Lemma

Let w be a.e. truly β-rough, and h ∈ C q−var , with 1
q > β, then w + h is

a.e. truly β-rough (in a suitable sense).

In particular, for w truly rough,

∀h ∈ H, ∇Lw (h) = 0 ⇒ Lw (h) = 0.
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Proof of convergence : Łojasiewicz inequality

Consider a function L : H → R+ satisfying, for some c > 0,

∀x ∈ H, |(∇L)(x)|2 ⩾ c2L(x). (Ł)

Then, for the gradient flow ẋ(s) = −∇L(x(s)), it holds that

L(x(s)) ⩽ L(x(0))e−c2s converges to 0.

More importantly : x(s) →s→∞ x∞, where L(x∞) = 0.
Proof : (Łojasiewicz 1960’s)

d

ds

{
2
√
L(x(s)) + c

∫ s

0
|ẋ(u)|du

}
⩽ 0

which implies that the trajectory (x(s); s ⩾ 0) has finite length, and,
in particular, converges (to a minimizer).
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Local Łojasiewicz inequality

Proposition

Assume that L : H → R+ satisfies,

∀x ∈ H, |(∇L)(x)|2 ⩾ c2(|x |)L(x) (Łloc)

where c(·) is decreasing, and satisfies
∫ +∞

c(r)dr = +∞.
Then for the gradient flow ẋ(s) = −∇L(x(s)), it holds that

x(s) →s→∞ x∞, where L(x∞) = 0.

Proof : (Łojasiewicz’s argument again)

d

ds

{
1
2

√
L(x(s)) + C

(
|x0|+

∫ s

0
|ẋ(u)|du

)}
⩽ 0

with C =
∫ ·
0 c . □

For instance, one can have c(r) = c
1+r .
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Arguments of proof

In our case, we have,
∥∇L∥2

H
L

⩾ c(w ; h)2,

where

c(w ; h)2 = inf
|ξ|=1

∥ξ ·Rn ∇H(X1)∥2
H

= inf
|ξ|=1

∑
i

∫ 1

0
(Jt→1Vi (Xt) ·Rn ξ)2 dt

where Jt→1 is the Jacobian matrix of the flow of X between t and 1.

(Familiar object from Malliavin calculus : c is the smallest eigenvalue of
the Malliavin matrix at w + h for the functional X1).

We then need to prove

c(w ; h)2 ≳
1

1 + ∥h∥2
H
.
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Step-2 nilpotent case

The nilpotent hypothesis yields (letting z = X1)

Jt,1Vi (Xt) = Vi (z)−
∑
j

[Vj ,Vi ](z)(w + h)jt,1.

This yields

c(w ; h)2 ≳ inf∑
i,j ξ

2
i,j=1

∑
i

∫ 1

0
dt

ξii +
∑
j

ξij(w
j + hj)t,1

2


For w B.M.,

∥w − h∥L2 ⩾
C (w)

1 + ∥h∥H1
.

(This is a similar result to the fact that the norm of w in the Besov
space B

1/2
2,∞ is ⩾ 1 a.s.).
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Convergence for discrete approximations

The continuity properties of rough path theory allow for simple proofs of
convergence of discrete approximations.

For instance, assume that we know that for w a Brownian motion, the
g.f. solution h → h∞(non-degenerate minimum) a.s.

For fixed N, let HN ∼ RNd the space of piecewise linear controls, linear
on [i/N, (i + 1)/N]. Let hN be the gradient flow :

d

ds
hN(s) = −∇HN

L(hN(s)), ḣN,j(0) =
1√
N
Zij on [i/N, (i + 1)/N],

where the Zij are i.i.d. N (0, 1).
Then the convergence for B.M. implies

lim
N→∞

P
(
hN(s) →s→+∞ hN∞ with L(hN∞) = 0

)
= 1.
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Numerical experiment

(rank d = 10, n = 55 (step 2 nilpotent), 100 time points, learning
rate= 0.1)
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Numerical experiment

(rank d = 2, step 3 nilpotent (n = 5), 100 time points, learning
rate= 0.1)
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Conclusion : (many) remaining questions

We are able to show convergence of gradient flow for the control problem

inf
h
|X1(h)− y |2

with rough (Brownian) initialization in the simplest non-trivial cases
(elliptic, step-2 nilpotent).
Roughness helps !

Can we do better ?
Convergence for more general vector fields : Step-3 nilpotent,
arbitrary nilpotent, general case ?

Convergence for discretized problems ? (Quantitative discretized
roughness, number of steps vs. number of Lie brackets needed,...)

Variants of gradient descent ? (stochastic, ...)

Applications to Deep Learning ?
Other criteria than roughness ?
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