LMI-based Suboptimal Consensus for a class of LTI Multi-agent Systems

Avinash Kumar

(in collaboration with Prof. Tushar Jain (IIT Mandi, India))

 $13\ {\rm February},\ 2025$

Control Design for Multi-agent Systems (MAS)*

• Multi-agent systems control design: global (system level) objectives to be accomplished using local (agent level) interaction.

Information Consensus in Multivehicle Cooperative Control- Wie Ren, Randal W. Beard and Ella M .Atkins IEEE Control Systems Magazine, April-2007.

Control Design for Multi-agent Systems (MAS)*

- Multi-agent systems control design: global (system level) objectives to be accomplished using local (agent level) interaction.
- Natural phenomenon:

Figure: Flocking of birds

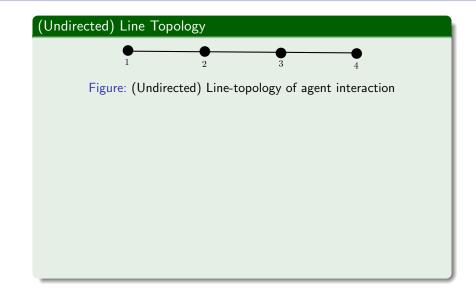
Figure: Schooling of fish

Information Consensus in Multivehicle Cooperative Control- Wie Ren, Randal W. Beard and Ella M .Atkins IEEE Control Systems Magazine, April-2007.

• Idea: Collective group behavior through local interaction.

- Idea: Collective group behavior through local interaction.
- Due to local interactions and thus the constraints on the communication capabilities, the control input is inherently structured and hence not trivial to compute.

Control Design for MAS \equiv Structured Input Design



Control Design for MAS \equiv Structured Input Design

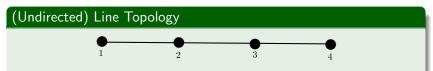


Figure: (Undirected) Line-topology of agent interaction

For this model of interaction with *relative information exchange*, the (linear) inputs for the agents must be of the form

Agent 1:
$$\mathbf{u}_1(t) = \alpha_{12}(\mathbf{x}_2(t) - \mathbf{x}_1(t)),$$

Agent 2: $\mathbf{u}_2(t) = \alpha_{21}(\mathbf{x}_1(t) - \mathbf{x}_2(t)) + \alpha_{23}(\mathbf{x}_3(t) - \mathbf{x}_2(t)),$
Agent 3: $\mathbf{u}_3(t) = \alpha_{32}(\mathbf{x}_2(t) - \mathbf{x}_3(t)) + \alpha_{34}(\mathbf{x}_4(t) - \mathbf{x}_3(t)),$ and
Agent 4: $\mathbf{u}_4(t) = \alpha_{43}(\mathbf{x}_3(t) - \mathbf{x}_4(t)).$

where α_{ij} s are constants to be computed.

Problem 1 (a class of LTI MAS)

(system) Consider a group of agents with dynamics

$$\dot{\mathbf{x}}_i(t) = A\mathbf{x}_i(t) + B_i\mathbf{u}_i(t); \ \mathbf{x}_i(t_0) = \mathbf{x}_{i0}, \ i \in \{1, 2, \dots, N\},\$$

where $\mathbf{x}_i(t) \in \mathbb{R}^n$, $\mathbf{u}_i(t) \in \mathbb{R}^m$, B_i being full rank $\forall i \in \{1, 2, 3...N\}$, and $m \leq n$ communicating over a given undirected topology.

Problem 1 (Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

 $\dot{\mathbf{x}}_i(t) = A\mathbf{x}_i(t) + B_i\mathbf{u}_i(t); \ \mathbf{x}_i(t_0) = \mathbf{x}_{i0}, \ i \in \{1, 2, \dots, N\},\$

where $\mathbf{x}_i(t) \in \mathbb{R}^n$, $\mathbf{u}_i(t) \in \mathbb{R}^m$, B_i full rank $\forall i \in \{1, 2, 3...N\}$, and $m \leq n$ communicating over a given undirected topology.

(protocol) Design a control law of the form

$$\mathbf{u}_{i}(t) = \sum_{j \in \mathcal{N}_{i}} K_{ij} \left(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) \right), i \in \{1, 2, 3, \dots, N\}$$

 \mathcal{N}_i denoting the neighborhood of agent i that is set of all agents interacting with agent i,

Problem 1 (Consensus Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

$$\dot{\mathbf{x}}_i = A\mathbf{x}_i + B_i\mathbf{u}_i; \ \mathbf{x}_i(t_0) = \mathbf{x}_{i0}, \ i \in \{1, 2, \dots N\},\$$

where $\mathbf{x}_i \in \mathbb{R}^n$, $\mathbf{u}_i \in \mathbb{R}^m$, B_i is full rank $\forall i \in \{1, 2, 3..., N\}$, and $m \leq n$ communicating over a given undirected topology. (protocol) Design a control law of the form

$$\mathbf{u}_{i}(t) = \sum_{j \in \mathcal{N}_{i}} K_{ij} \left(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) \right), i \in \{1, 2, 3, \dots, N\}$$

 \mathcal{N}_i denoting the neighborhood of agent i that is set of all agents interacting with agent i, such that

(objective) consensus (state agreement) is achieved that is $||\mathbf{x}_i(t) - \mathbf{x}_j(t)|| \to 0$ as $t \to \infty \quad \forall i \neq j$ and $i, j \in \{1, 2, 3, \dots, N\}$.

Problem 1 (Suboptimal Consensus Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

$$\dot{\mathbf{x}}_i(t) = A\mathbf{x}_i(t) + B_i\mathbf{u}_i(t); \ \mathbf{x}_i(t_0) = \mathbf{x}_{i0}, \ i \in \{1, 2, \dots, N\},\$$

where $\mathbf{x}_i(t) \in \mathbb{R}^n$, $\mathbf{u}_i(t) \in \mathbb{R}^m$, B_i full rank $\forall i \in \{1, 2, 3...N\}$, and $m \leq n$ communicating over a given undirected topology.

(protocol) Design a control law of the form

$$\mathbf{u}_{i}(t) = \sum_{j \in \mathcal{N}_{i}} K_{ij} \left(\mathbf{x}_{i}(t) - \mathbf{x}_{j}(t) \right), i \in 1, 2, 3, \dots, N$$

 \mathcal{N}_i denoting the neighborhood of agent *i* that is set of all agents interacting with agent *i*, such that (objective) consensus (state agreement) is achieved that is $\mathbf{x}_i(t) - \mathbf{x}_j(t) \rightarrow \mathbf{0}$ as $t \rightarrow \infty \forall i \neq j$ and $i, j \in \{1, 2, 3, \dots, N\}$.

(quantify suboptimality) Also, determine the upper bound $\gamma > 0$ on the cost

$$\hat{J} = \int_{t_0}^{\infty} \frac{1}{2} \left(\sum_{i=1}^{N} \sum_{j \in \mathcal{N}_i} \left(\mathbf{x}_i - \mathbf{x}_j \right)^T Q_{ij} \left(\mathbf{x}_i - \mathbf{x}_j \right) + \sum_{i=1}^{N} \mathbf{u}_i^T R_i \mathbf{u}_i \right) dt$$

where $Q_{ij} = Q_{ij}^T = \underline{Q} \ge \mathbf{0} \ \forall i, j, R_i = R_i^T = \underline{R} \succ \mathbf{0} \ \forall i.$

Translation to Structured Suboptimal LQR

Error Dynamics

Define a new state vector for the i-th agent as

$$\mathbf{e}_i = \mathbf{x}_i - \mathbf{x}_{i+1}, i = 1, \dots, N-1.$$
 (1a)

The overall dynamics of the multiagent system can be equivalently represented by

$$\dot{\mathbf{e}} = \tilde{A}\mathbf{e} + \tilde{B}\hat{\mathbf{u}}, \mathbf{e}(t_0) = \mathbf{e}_0,$$
 (1b)

where $\mathbf{e} = \operatorname{col}(\mathbf{x}_1 - \mathbf{x}_2, \mathbf{x}_2 - \mathbf{x}_3, \dots, \mathbf{x}_{N-1} - \mathbf{x}_N) \in \mathbb{R}^{n(N-1)}, \hat{\mathbf{u}} = \operatorname{col}(\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N) \in \mathbb{R}^{mN}, \tilde{A} = I_{N-1} \otimes A \text{ and}$

$$\tilde{B} = \begin{bmatrix} B_1 & -B_2 & \cdots & \cdots & \cdots & \mathbf{0} \\ \mathbf{0} & B_2 & -B_3 & \cdots & \cdots & \mathbf{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \mathbf{0} & \cdots & \cdots & B_{N-1} & -B_N \end{bmatrix}.$$
 (1c)

Design an optimal/suboptimal control law $\hat{\mathbf{u}}$ = $-K^{e}\mathbf{e}$ such that

- K^e has the desired structure (as imposed by the communication topology), and
- ② Consensus is achieved i.e. $\mathbf{e}_i \rightarrow \mathbf{0} \quad \forall i \in \{1, 2, 3.., N 1\}$ (regulation of errors) and the (quadratic) cost $\hat{J} = \int_0^\infty \left(\mathbf{e}^T \tilde{Q} \mathbf{e} + \hat{\mathbf{u}} \tilde{R} \hat{\mathbf{u}}\right) dt$ is minimized.

^I Kumar, A. and Jain, T., 2023. Suboptimal consensus protocol design for a class of multiagent systems. Journal of the Franklin Institute, 360(18), pp.14553-14566.

Design an optimal/suboptimal control law $\hat{\mathbf{u}}$ = $-K^{e}\mathbf{e}$ such that

- K^e has the desired structure (as imposed by the communication topology), and
- ② Consensus is achieved i.e. $\mathbf{e}_i \rightarrow \mathbf{0} \quad \forall i \in \{1, 2, 3.., N 1\}$ (regulation of errors) and the (quadratic) cost $\hat{J} = \int_0^\infty \left(\mathbf{e}^T \tilde{Q} \mathbf{e} + \hat{\mathbf{u}} \tilde{R} \hat{\mathbf{u}}\right) dt$ is minimized.

(Note that \tilde{Q} and \tilde{R} are readily obtained from Q and \underline{R} .)

^I Kumar, A. and Jain, T., 2023. Suboptimal consensus protocol design for a class of multiagent systems. Journal of the Franklin Institute, 360(18), pp.14553-14566.

Design an optimal/suboptimal control law $\hat{\mathbf{u}}$ = $-K^{e}\mathbf{e}$ such that

- K^e has the desired structure (as imposed by the communication topology), and
- ② Consensus is achieved i.e. $\mathbf{e}_i \rightarrow \mathbf{0} \quad \forall i \in \{1, 2, 3.., N 1\}$ (regulation of errors) and the (quadratic) cost $\hat{J} = \int_0^\infty \left(\mathbf{e}^T \tilde{Q} \mathbf{e} + \hat{\mathbf{u}} \tilde{R} \hat{\mathbf{u}}\right) dt$ is minimized.

(Note that \tilde{Q} and \tilde{R} are readily obtained from Q and \underline{R} .) K^e is chosen to be of the form $K^e = -\tilde{R}^{-1}\tilde{B}^T\dot{P}$.[†]

^I Kumar, A. and Jain, T., 2023. Suboptimal consensus protocol design for a class of multiagent systems. Journal of the Franklin Institute, 360(18), pp.14553-14566.

Design an optimal/suboptimal control law $\hat{\mathbf{u}}$ = $-K^e\mathbf{e}$ such that

- K^e has the desired structure (as imposed by the communication topology), and
- **2** Consensus is achieved i.e. $\mathbf{e}_i \rightarrow \mathbf{0} \quad \forall i \in \{1, 2, 3.., N 1\}$ (regulation of errors) and the (quadratic) cost $\hat{J} = \int_0^\infty \left(\mathbf{e}^T \tilde{Q} \mathbf{e} + \hat{\mathbf{u}} \tilde{R} \hat{\mathbf{u}}\right) dt$ is minimized.

(Note that \tilde{Q} and \tilde{R} are readily obtained from Q and \underline{R} .) K^e is chosen to be of the form $K^e = -\tilde{R}^{-1}\tilde{B}^T\dot{P}$.[†] Denote \mathbb{P} as the set constituting the \hat{P} matrices having the desired structure (as imposed by K^e).

^TKumar, A. and Jain, T., 2023. Suboptimal consensus protocol design for a class of multiagent systems. Journal of the Franklin Institute, 360(18), pp.14553-14566.

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

If there exists a matrix P and a symmetric matrix $\bar{P} \succ \mathbf{0}$ satisfying

$$\begin{bmatrix} A^T P + PA + Q & \left(P + P^T\right)B \\ B^T \left(P + P^T\right) & 4R \end{bmatrix} > \mathbf{0},$$

$$\begin{bmatrix} -A^T \bar{P} - \bar{P}A - Q + \eta I & \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)B \\ \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)^T B & R \end{bmatrix} > \mathbf{0}$$

such that $A - \frac{1}{2}BR^{-1}\left(P + P^T\right)$ is Hurwitz,

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

If there exists a matrix P and a symmetric matrix $\bar{P} \succ \mathbf{0}$ satisfying

$$\begin{bmatrix} A^T P + PA + Q & \left(P + P^T\right)B \\ B^T \left(P + P^T\right) & 4R \end{bmatrix} > \mathbf{0},$$

$$\begin{bmatrix} -A^T \bar{P} - \bar{P}A - Q + \eta I & \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)B \\ \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)^T B & R \end{bmatrix} > \mathbf{0},$$

such that $A - \frac{1}{2}BR^{-1}\left(P + P^{T}\right)$ is Hurwitz, then the control law $\mathbf{u} = -\frac{1}{2}R^{-1}B^{T}\left(P + P^{T}\right)\mathbf{x}$ is ϵ -suboptimal,

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

If there exists a matrix P and a symmetric matrix $\bar{P} \succ \mathbf{0}$ satisfying

$$\begin{bmatrix} A^T P + PA + Q & \left(P + P^T\right)B \\ B^T \left(P + P^T\right) & 4R \end{bmatrix} \ge \mathbf{0},$$

$$\begin{bmatrix} -A^T \bar{P} - \bar{P}A - Q + \eta I & \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)B \\ \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)^T B & R \end{bmatrix} \ge \mathbf{0}$$

such that $A - \frac{1}{2}BR^{-1}\left(P + P^{T}\right)$ is Hurwitz, then the control law $\mathbf{u} = -\frac{1}{2}R^{-1}B^{T}\left(P + P^{T}\right)\mathbf{x}$ is ϵ -suboptimal, that is the associated cost satisfies $J < J^{*} + \epsilon$, with $\epsilon = \mathbf{x}_{0}^{T}\left(\bar{P} + \eta\tilde{P}\right)\mathbf{x}_{0} - J^{*}$, J^{*} being the optimal cost,

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

If there exists a matrix P and a symmetric matrix $\bar{P} \succ \mathbf{0}$ satisfying

$$\begin{bmatrix} A^T P + PA + Q & \left(P + P^T\right)B \\ B^T \left(P + P^T\right) & 4R \end{bmatrix} > \mathbf{0},$$

$$\begin{bmatrix} -A^T \bar{P} - \bar{P}A - Q + \eta I & \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)B \\ \left(\frac{1}{2}\left(P + P^T\right) - \bar{P}\right)^T B & R \end{bmatrix} > \mathbf{0}$$

such that $A - \frac{1}{2}BR^{-1}\left(P + P^{T}\right)$ is Hurwitz, then the control law $\mathbf{u} = -\frac{1}{2}R^{-1}B^{T}\left(P + P^{T}\right)\mathbf{x}$ is ϵ -suboptimal, that is the associated cost satisfies $J < J^{*} + \epsilon$, with $\epsilon = \mathbf{x}_{0}^{T}\left(\bar{P} + \eta\tilde{P}\right)\mathbf{x}_{0} - J^{*}$, J^{*} being the optimal cost, and \tilde{P} being the solution of the following equation.

$$\left(A - \frac{1}{2}BR^{-1}B^{T}\left(P + P^{T}\right)\right)^{T}\tilde{P} + \tilde{P}\left(A - \frac{1}{2}BR^{-1}B^{T}\left(P + P^{T}\right)\right) + I = \mathbf{0}.$$

Consider the system $\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t)$ and the associated quadratic cost

$$J(\mathbf{x}(t),\mathbf{u}(t)) = \frac{1}{2} \int_{t_0}^{\infty} \left(\mathbf{x}^T(t)Q\mathbf{x}(t) + \mathbf{u}^T(t)R\mathbf{u}(t) \right) dt.$$

If there exists a matrix P and a symmetric matrix $\bar{P} \succ \mathbf{0}$ satisfying

$$\begin{bmatrix} A^T P + PA + Q & (P + P^T) B \\ B^T (P + P^T) & 4R \end{bmatrix} > \mathbf{0},$$
$$\begin{bmatrix} -A^T \bar{P} - \bar{P}A - Q + \eta I & \left(\frac{1}{2} (P + P^T) - \bar{P}\right) B \\ \left(\frac{1}{2} (P + P^T) - \bar{P}\right)^T B & R \end{bmatrix} > \mathbf{0}$$

such that $A - \frac{1}{2}BR^{-1}\left(P + P^{T}\right)$ is Hurwitz, then the control law $\mathbf{u} = -\frac{1}{2}R^{-1}B^{T}\left(P + P^{T}\right)\mathbf{x}$ is ϵ -suboptimal, that is the associated cost satisfies $J < J^{*} + \epsilon$, with $\epsilon = \mathbf{x}_{0}^{T}\left(\bar{P} + \eta \tilde{P}\right)\mathbf{x}_{0} - J^{*}$, J^{*} being the optimal cost, and \tilde{P} being the solution of the following equation.

$$\left(A - \frac{1}{2}BR^{-1}B^T\left(P + P^T\right)\right)^T \tilde{P} + \tilde{P}\left(A - \frac{1}{2}BR^{-1}B^T\left(P + P^T\right)\right) + I = \mathbf{0}.$$

A remark on the origin of these LMIs at the end!!

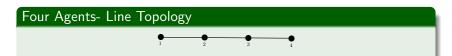
Suboptimal Consensus Protocol Design

 γ - Suboptimal Consensus Protocol Design

Consider the convex optimization problem $\begin{array}{c|c}
\min & \eta \\
& \hat{P}, \hat{P}_{\geq 0} \\
\text{s.t.} & \hat{P} \in \mathbb{P}, \\
\end{array}$ $\left| \begin{array}{c|c}
\bar{\Gamma}(\hat{P}) & \hat{P}\tilde{B} \\
(\hat{P}\tilde{B})^T & \hat{R} \\
\hline & \mathbf{0} \\
\hline & \left(\hat{P}, \hat{P}, \hat$

where $\overline{\Gamma}(\hat{P}) \triangleq \tilde{A}^T \hat{P} + \hat{P} \tilde{A} + \tilde{Q}$. Let the triplet $\{\hat{P}, \hat{P}, \eta\}$ be a solution this problem such that $(\tilde{A} - \tilde{B}\hat{R}^{-1}\tilde{B}^T\hat{P})$ is Hurwitz, then the control input $\hat{\mathbf{u}} = K^{\mathbf{e}}\mathbf{e} = -\hat{R}^{-1}\tilde{B}^T\hat{P}\mathbf{e}$ is γ - suboptimal that is the cost $J < \gamma$ with $\gamma = \mathbf{e}_0^T \left(\hat{P} + \eta \tilde{P}_e\right)\mathbf{e}_0$, where \tilde{P}_e is the unique positive semi-definite solution of $\left(\tilde{A} - \tilde{B}\hat{R}^{-1}\tilde{B}^T\hat{P}\right)^T\tilde{P}_e + \tilde{P}_e\left(\tilde{A} - \tilde{B}\hat{R}^{-1}\tilde{B}^T\hat{P}\right) + I = \mathbf{0}$.

Suboptimal Consensus Protocol Design- Numerical Results



Consider a four-agent system where the single-integrator agents are communicating over the line topology with dynamics $\dot{x}_i = u_i$, $i \in \{1, 2, 3, 4\}$. Design a control input of the form

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{bmatrix} = \begin{bmatrix} \alpha_{12}(x_2 - x_1) \\ \alpha_{21}(x_1 - x_2) + \alpha_{23}(x_3 - x_2) \\ \alpha_{32}(x_3 - x_2) + \alpha_{34}(x_4 - x_3) \\ \alpha_{43}(x_3 - x_4) \end{bmatrix}$$

such that consensus is achieved and determine γ such that the cost

$$J = \int_0^\infty \left((x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_4)^2 + u_1^2 + u_2^2 + u_3^2 + u_4^2 \right) dt$$

satisfies $J < \gamma$. Here, α_{ij} s are the design variables. Also, $x_1(0) = 0.1$, $x_2(0) = 0.2$, $x_3(0) = 0.5$ and $x_4(0) = -0.5$.

The solution of the formulated convex optimization problem is found to be η = 1 with

$$\hat{P} = diag(0.39, 0.37, 0.39).$$

The corresponding feedback-gain matrix is computed to be

$$K^{\mathbf{e}} = \begin{bmatrix} -0.39 & 0 & 0\\ 0.39 & -0.37 & 0\\ 0 & 0.37 & -0.39\\ 0 & 0 & 0.39 \end{bmatrix}$$

yielding $\alpha_{12} = \alpha_{21} = 0.39$, $\alpha_{23} = \alpha_{32} = 0.37$, and $\alpha_{34} = \alpha_{43} = 0.39$. Also, $\mathbf{e}_0^T \left(\hat{P} + \eta \tilde{P}_e \right) \mathbf{e}_0 = 1.1 = \gamma > J$. The cost is computed to be J = 0.89. In the existing results , the upper bound γ is a priori specified based on which a set of initial conditions of agents is determined. Furthermore, the feedback-gain matrix of the following form is computed

$$K^{\mathbf{e}} = \begin{bmatrix} -c & 0 & 0 \\ c & -c & 0 \\ 0 & c & -c \\ 0 & 0 & c \end{bmatrix},$$

where $c = 1.31^{\ddagger}$ is computed by solving a Lyapunov equation of the order one (order of the agent). Thus, a uniform gain is computed for all the agents, contrariwise the proposed approach.

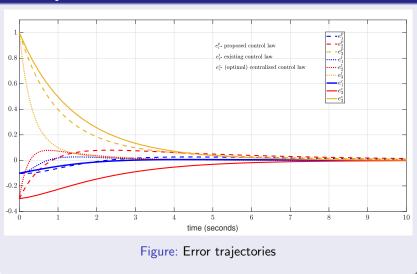
[‡]Jiao *et. al.*, A suboptimality approach to distributed linear quadratic optimal control, IEEE TAC'.19.

mparison with existing results in literature						
Table: Comparison with existing results						
Controller	Fe	Feedback-gain matrix				st
Centralized (Optimal) K ^e =	$\begin{bmatrix} -0.82 \\ 0.54 \\ 0.16 \\ 0.11 \end{bmatrix}$	-0.27 -0.65 0.65 0.27	-0.11 -0.16 -0.54 0.82	<i>J</i> = 0	.74
Proposed	K ^e =	$\begin{bmatrix} -0.39 \\ 0.39 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ -0.37 \\ 0.37 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -0.39 \\ 0.39 \end{array}$	J = 0	.89
Existing (as per $§$)	K ^e =	$\begin{bmatrix} -1.31 \\ 1.31 \\ 0 \\ 0 \end{bmatrix}$	$\begin{array}{c} 0 \\ -1.31 \\ 1.31 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ -1.31 \\ 1.31 \end{array}$	<i>J</i> = 0	.92

 $^{{}^{\}mbox{\$}}$ Jiao et. al., A suboptimality approach to distributed linear quadratic optimal control, IEEE TAC'.19.

Suboptimal Consensus Protocol Design- Numerical Results

Error-trajectories



Bonus Information commences!

Krotov Sufficient Conditions

Generic Optimal Control Problem (GOCP)

Compute an optimal control law $\mathbf{u}^*(t)$ which minimizes the cost functional:

$$I(\mathbf{x}(t), \mathbf{u}(t)) = l_f(\mathbf{x}(t_f)) + \int_{t_0}^{t_f} l(\mathbf{x}(t), \mathbf{u}(t), t) dt$$
(2)

subject to the system dynamics $\dot{\mathbf{x}}(t) = f(\mathbf{x}(t), \mathbf{u}(t), t)$ with $\mathbf{x}(t_0) \in \mathbb{R}^n$; $t \in [t_0, t_f]$.

The state and input vector may be constrained: $\mathbf{x}(t) \in \mathbb{X}$ and $\mathbf{u}(t) \in \mathbb{U}$.

Krotov Conditions

For the GOCP, let $q(\mathbf{x}(t), t)$ (Krotov function) be a piecewise continuously differentiable function. Then, there is an equivalent representation of (2) given as below.

$$J_{eq}(\mathbf{x}(t), \mathbf{u}(t)) = s_f(\mathbf{x}(t_f)) + q(\mathbf{x}_0, t_0) + \int_{t_0}^{t_f} s(\mathbf{x}(t), \mathbf{u}(t), t) dt$$

where

$$\begin{split} s(\mathbf{x}(t),\mathbf{u}(t),t) &\doteq \frac{\partial q}{\partial t} + l(\mathbf{x}(t),\mathbf{u}(t),t) + \frac{\partial q}{\partial \mathbf{x}}f(\mathbf{x}(t),\mathbf{u}(t),t),\\ s_f(\mathbf{x}(t_f) &\doteq l_f(\mathbf{x}(t_f)) - q(\mathbf{x}(t_f),t_f). \end{split}$$

If $[\mathbf{x}^*(t), \mathbf{u}^*(t)]$ is an *admissible process* such that

$$s(\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t) = \min_{\mathbf{x} \in \mathbb{X}, \mathbf{u} \in \mathbb{U}} s(\mathbf{x}(t), \mathbf{u}(t), t), \forall t \in [t_0, t_f),$$

and

$$s_f(\mathbf{x}^*(t_f)) = \min_{\mathbf{x} \in \mathbb{X}_f} s_f(\mathbf{x});$$

then $[\mathbf{x}^*(t), \mathbf{u}^*(t)]$ is the optimal process. Here, X_f is the admissible terminal set.

Vadim Krotov. Global Methods in Optimal Control Theory. Marcel Dekker, 1995.

While utilizing the Krotov framework to infinite-horizon linear quadratic regulation problem, with quadratic Krotov functions $\mathbf{x}^T P \mathbf{x}$ and $\mathbf{x}^T \left(P - \bar{P} \right) \mathbf{x}$, the convexity conditions of the equivalent optimization problem lead to the LMIs used in this work.