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Multi-agent systems control design: global (system level) ob-
jectives to be accomplished using local (agent level) interaction.

Natural phenomenon:

Figure: Flocking of birds Figure: Schooling of fish
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Control Design for MAS

Idea: Collective group behavior through local interaction.

Due to local interactions and thus the constraints on the com-
munication capabilities, the control input is inherently struc-
tured and hence not trivial to compute.
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Control Design for MAS ≡ Structured Input Design

(Undirected) Line Topology

b b b b
1 2 43

Figure: (Undirected) Line-topology of agent interaction

For this model of interaction with relative information exchange, the
(linear) inputs for the agents must be of the form

Agent 1 ∶ u1(t) = α12(x2(t) − x1(t)),

Agent 2 ∶ u2(t) = α21(x1(t) − x2(t)) + α23(x3(t) − x2(t)),

Agent 3 ∶ u3(t) = α32(x2(t) − x3(t)) + α34(x4(t) − x3(t)), and

Agent 4 ∶ u4(t) = α43(x3(t) − x4(t)).

where αijs are constants to be computed.
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Control Design for LTI MAS

Problem 1 ( a class of LTI MAS)

(system) Consider a group of agents with dynamics

ẋi(t) = Axi(t) +Biui(t); xi(t0) = xi0, i ∈ {1,2, . . .N},

where xi(t) ∈ Rn, ui(t) ∈ Rm, Bi being full rank ∀i ∈ {1,2,3 . . .N}, and
m ≤ n communicating over a given undirected topology.
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Control Design for LTI MAS

Problem 1 ( Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

ẋi(t) = Axi(t) +Biui(t); xi(t0) = xi0, i ∈ {1,2, . . .N},

where xi(t) ∈ Rn, ui(t) ∈ Rm, Bi full rank ∀i ∈ {1,2,3 . . .N}, and m ≤ n
communicating over a given undirected topology.

(protocol) Design a control law of the form

ui(t) = ∑
j∈Ni

Kij (xi(t) − xj(t)) , i ∈ {1,2,3, .......,N}

Ni denoting the neighborhood of agent i that is set of all agents interacting
with agent i,
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Consensus Protocol Design for LTI MAS

Problem 1 ( Consensus Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

ẋi = Axi +Biui; xi(t0) = xi0, i ∈ {1,2, . . .N},

where xi ∈ Rn, ui ∈ Rm, Bi is full rank ∀i ∈ {1,2,3 . . .N}, and m ≤ n
communicating over a given undirected topology.
(protocol) Design a control law of the form

ui(t) = ∑
j∈Ni

Kij (xi(t) − xj(t)) , i ∈ {1,2,3, .......,N}

Ni denoting the neighborhood of agent i that is set of all agents interacting
with agent i, such that

(objective) consensus (state agreement) is achieved that is ∥xi(t) −
xj(t)∥ → 0 as t→∞ ∀i ≠ j and i, j ∈ {1,2,3, .......,N}.
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Suboptimal Consensus Protocol Design for LTI MAS

Problem 1 (Suboptimal Consensus Protocol design for a class of LTI MAS)

(system) Consider a group of agents with dynamics

ẋi(t) = Axi(t) +Biui(t); xi(t0) = xi0, i ∈ {1,2, . . .N},

where xi(t) ∈ Rn, ui(t) ∈ Rm, Bi full rank ∀i ∈ {1,2,3 . . .N}, and m ≤ n communicating over a given
undirected topology.
(protocol) Design a control law of the form

ui(t) = ∑
j∈Ni

Kij (xi(t) − xj(t)) , i ∈ 1,2,3, .......,N

Ni denoting the neighborhood of agent i that is set of all agents interacting with agent i, such that
(objective) consensus (state agreement) is achieved that is xi(t) − xj(t) → 0 as t → ∞ ∀i ≠ j and i, j ∈
{1,2,3, .......,N}.
(quantify suboptimality) Also, determine the upper bound γ > 0 on the cost

Ĵ = ∫
∞

t0

1

2

⎛
⎜
⎝

N

∑
i=1

∑
j∈Ni

(xi − xj)
T

Qij (xi − xj) +
N

∑
i=1

u
T
i Riui

⎞
⎟
⎠
dt

where Qij =QT
ij =Q ⪰ 0 ∀i, j, Ri = RT

i = R ≻ 0 ∀i.
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Translation to Structured Suboptimal LQR

Error Dynamics

Define a new state vector for the i−th agent as

ei = xi − xi+1, i = 1, . . . ,N − 1. (1a)

The overall dynamics of the multiagent system can be equivalently repre-
sented by

ė = Ãe + B̃û,e(t0) = e0, (1b)

where e = col(x1 − x2,x2 − x3, . . . ,xN−1 − xN) ∈ Rn(N−1), û =

col(u1,u2, . . . ,uN) ∈ RmN , Ã = IN−1 ⊗A and

B̃ =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B1 −B2 ⋯ ⋯ ⋯ 0
0 B2 −B3 ⋯ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 ⋯ ⋯ BN−1 −BN

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (1c)
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Translation to Structured Suboptimal LQR

Suboptimal Structured LQR

Design an optimal/suboptimal control law û = −Kee such that

1 Ke has the desired structure (as imposed by the communication
topology), and

2 Consensus is achieved i.e. ei → 0 ∀i ∈ {1,2,3..,N −
1}(regulation of errors) and the (quadratic) cost Ĵ =

∫
∞

0 (e
T Q̃e + ûR̃û)dt is minimized.

(Note that Q̃ and R̃ are readily obtained from Q and R.)

Ke is chosen to be of the form Ke = −R̃−1B̃T P̂ . †

Denote P as the set constituting the P̂ matrices having the desired
structure (as imposed by Ke).

†
Kumar, A. and Jain, T., 2023. Suboptimal consensus protocol design for a class of multiagent systems.

Journal of the Franklin Institute, 360(18), pp.14553-14566.
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∫
∞

0 (e
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Suboptimal LQR Design
ϵ− Suboptimal LQR
Consider the system ẋ(t) = Ax(t) +Bu(t) and the associated quadratic cost

J(x(t),u(t)) =
1

2
∫
∞

t0
(x

T
(t)Qx(t) +u

T
(t)Ru(t))dt.

If there exists a matrix P and a symmetric matrix P̄ ≻ 0 satisfying

⎡
⎢
⎢
⎢
⎢
⎣

ATP +PA +Q (P +PT
)B

BT
(P +PT

) 4R

⎤
⎥
⎥
⎥
⎥
⎦

≻ 0,

⎡
⎢
⎢
⎢
⎢
⎣

−AT P̄ − P̄A −Q + ηI ( 1
2
(P +PT

) − P̄)B

( 1
2
(P +PT

) − P̄)
T

B R

⎤
⎥
⎥
⎥
⎥
⎦

≻ 0,

such that A− 1
2
BR−1 (P +PT

) is Hurwitz, then the control law u = − 1
2
R−1BT

(P +PT
)x is ϵ-suboptimal,

that is the associated cost satisfies J < J∗ + ϵ, with ϵ = xT
0 (P̄ + ηP̃)x0 − J∗, J∗ being the optimal cost, and

P̃ being the solution of the following equation.

(A −
1

2
BR

−1
B

T
(P +P

T
))

T

P̃ + P̃ (A −
1

2
BR

−1
B

T
(P +P

T
)) + I = 0.

A remark on the origin of these LMIs at the end!!
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Suboptimal Consensus Protocol Design

γ- Suboptimal Consensus Protocol Design
Consider the convex optimization problem

min
P̂ , ˆ̄P≻0

η

s.t. P̂ ∈ P,
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Γ̄(P̂ ) P̂ B̃

(P̂ B̃)
T

R̂
0

0
−Γ̄( ˆ̄P ) + ηI (P̂ − ˆ̄P) B̃

((P̂ − ˆ̄P) B̃)
T

R̂

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≻ 0,

where Γ̄(P̂ ) ≜ ÃT P̂ + P̂ Ã+ Q̃. Let the triplet {P̂ , ˆ̄P, η} be a solution this
problem such that (Ã − B̃R̂−1B̃T P̂ ) is Hurwitz, then the control input

û = Kee = −R̂−1B̃T P̂e is γ- suboptimal that is the cost J < γ with

γ = eT0 (
ˆ̄P + ηP̃e)e0, where P̃e is the unique positive semi-definite solution

of (Ã − B̃R̂−1B̃T P̂)
T
P̃e + P̃e (Ã − B̃R̂−1B̃T P̂ ) + I = 0.
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Suboptimal Consensus Protocol Design- Numerical Results

Four Agents- Line Topology
b b b b
1 2 43

Consider a four-agent system where the single-integrator agents are
communicating over the line topology with dynamics ẋi = ui , i ∈
{1,2,3,4}. Design a control input of the form

u =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

u1

u2

u3

u4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α12(x2 − x1)

α21(x1 − x2) + α23(x3 − x2)

α32(x3 − x2) + α34(x4 − x3)

α43(x3 − x4)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

such that consensus is achieved and determine γ such that the cost

J = ∫
∞

0
((x1 − x2)

2
+ (x2 − x3)

2
+ (x3 − x4)

2
+ u2

1 + u
2
2 + u

2
3 + u

2
4) dt

satisfies J < γ. Here, αijs are the design variables. Also, x1(0) = 0.1,
x2(0) = 0.2, x3(0) = 0.5 and x4(0) = −0.5.
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Suboptimal Consensus Protocol Design- Numerical Results

The solution of the formulated convex optimization problem is found
to be η = 1 with

P̂ = diag(0.39,0.37,0.39).

The corresponding feedback-gain matrix is computed to be

Ke
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.39 0 0
0.39 −0.37 0
0 0.37 −0.39
0 0 0.39

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

yielding α12 = α21 = 0.39, α23 = α32 = 0.37, and α34 = α43 = 0.39.

Also, eT0 (
ˆ̄P + ηP̃e)e0 = 1.1 = γ > J .

The cost is computed to be J = 0.89.
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Suboptimal Consensus Protocol Design- Numerical Results

In the existing results , the upper bound γ is a priori specified based
on which a set of initial conditions of agents is determined. Further-
more, the feedback-gain matrix of the following form is computed

Ke
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−c 0 0
c −c 0
0 c −c
0 0 c

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where c = 1.31‡ is computed by solving a Lyapunov equation of the
order one (order of the agent). Thus, a uniform gain is computed
for all the agents, contrariwise the proposed approach.

‡
Jiao et. al., A suboptimality approach to distributed linear quadratic optimal control, IEEE TAC’.19.
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Suboptimal Consensus Protocol Design- Numerical Results

Comparison with existing results in literature
Table: Comparison with existing results

Controller Feedback-gain matrix Cost

Centralized (Optimal) Ke
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.82 −0.27 −0.11
0.54 −0.65 −0.16
0.16 0.65 −0.54
0.11 0.27 0.82

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J = 0.74

Proposed Ke
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.39 0 0
0.39 −0.37 0
0 0.37 −0.39
0 0 0.39

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J = 0.89

Existing (as per §) Ke
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−1.31 0 0
1.31 −1.31 0
0 1.31 −1.31
0 0 1.31

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

J = 0.92

§
Jiao et. al., A suboptimality approach to distributed linear quadratic optimal control, IEEE TAC’.19.
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Error-trajectories

time (seconds)

Figure: Error trajectories
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Krotov Sufficient Conditions ¶

Generic Optimal Control Problem (GOCP)

Compute an optimal control law u∗(t) which minimizes the cost functional:

J(x(t),u(t)) = lf (x(tf )) + ∫
tf

t0
l(x(t),u(t), t)dt (2)

subject to the system dynamics ẋ(t) = f(x(t),u(t), t) with x(t0) ∈ Rn; t ∈ [t0, tf ].

The state and input vector may be constrained: x(t) ∈ X and u(t) ∈ U.

Krotov Conditions

For the GOCP, let q(x(t), t) (Krotov function) be a piecewise continuously differentiable function. Then, there is
an equivalent representation of (2) given as below.

Jeq(x(t),u(t)) = sf (x(tf )) + q(x0, t0) + ∫
tf

t0
s(x(t),u(t), t)dt

where

s(x(t),u(t), t) ≜
∂q

∂t
+ l(x(t),u(t), t) +

∂q

∂x
f(x(t),u(t), t),

sf (x(tf ) ≜ lf (x(tf )) − q(x(tf ), tf ).

If [x∗(t),u∗(t)] is an admissible process such that

s(x
∗
(t),u

∗
(t), t) = min

x∈X,u∈U
s(x(t),u(t), t),∀t ∈ [t0, tf ),

and
sf (x

∗
(tf )) = min

x∈Xf
sf (x);

then [x∗(t),u∗(t)] is the optimal process.
Here, Xf is the admissible terminal set.

¶
Vadim Krotov. Global Methods in Optimal Control Theory. Marcel Dekker, 1995.
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Where do LMIs come from?

While utilizing the Krotov framework to infinite-horizon linear
quadratic regulation problem, with quadratic Krotov functions
xTPx and xT (P − P̄ )x, the convexity conditions of the equiva-
lent optimization problem lead to the LMIs used in this work.


