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Possibly possible applications
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Assumptions for the rest of the talk

We assume that the maps f, g, h are unknown but satisfy
Q@ f:R? - R%is continuously differentiable

@ h:R? = R™ is continuously differentiable and injective (thus
m > d and typically m > d)
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Assumptions for the rest of the talk

We assume that the maps f, g, h are unknown but satisfy
Q@ f:R? - R%is continuously differentiable
@ h:R? = R™ is continuously differentiable and injective (thus
m > d and typically m > d)
© We call g:= h~1: h(R?) — RY the inverse of h and assume it
is of the form

for some 6 € R™*4,

We observe y;(t) = h(z;i(t)), i € I, at times t € T; C Np.
We denote the set of observed points by

Yi={yeR":y=vyt),icl,teT}
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Problem formulation 1

For the given data (y;(-))ier, find (d, f, (%i(-))icz, h, 0) where
Q@ deN
(2] f R R s continuously differentiable
Q i : Ti — R solving &(t + 1) = f(x(t)), foralli € I
Q 0 R™4 s with 3;(-) = 6Ty;(-) for all i € I
(5] iL~ . R4 — R™ is continuously differentiable and injective on
X :={0Ty;(t)):i € I,t € T;},
such that it holds

yi(t) =hoi(t) forallicl andtcT,.
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Non-uniqueness and pathological solutions

The problem formulation is coordinate-free. A change of
coordinates in the latent system induces a “different solution”.
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Non-uniqueness and pathological solutions

The problem formulation is coordinate free. A change of
coordinates in the latent system induces a “different solution*.

If I and 7; are djscrete, then, by interpolation, we can always find
a solution with d = 1. This does not represent the topology of the
latent system.
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Non-uniqueness and pathological solutions

The problem formulation is coordinate free. A change of
coordinates in the latent system induces a “different solution*.

If I and 7; are djscrete, then, by interpolation, we can always find
a solution with d = 1. This does not represent the topology of the
latent system.

We assume that the set X := {x;(t) € RY:i € I,t € T;} is open
in RY and T; = [0,T)] for alli € I.
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Problem formulation 1’

For the given data (yi(-))ier, find (d, f, (Zi(-))ier, h, 0) where
Q@ decN
Q/: R — RY s continuously differentiable
Q i;: T — RY solving Ft+1) = f(z(t), foralli e T
Q 0 e R™ js with 3;(-) = 6Ty;(-) for all i € I
(5 ) i~z~ . R4 — R™ is continuously differentiable and injective on
X :={0Ty;(t)) :i € I,t €[0,T]} open,
such that it holds

yi(t) = hoiy(t) forallieI andt e [0,T).
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Problem formulation 1’

For the given data (yi(-))ier, find (d, f, (Zi(-))ier, h, 0) where
Q@ decN
Q/: R — RY s continuously differentiable
Q i;: T — RY solving Ft+1) = f(z(t), foralli e T
Q 0 e R™ js with 3;(-) = 6Ty;(-) for all i € I
(5 ) i~z~ . R4 — R™ is continuously differentiable and injective on
X :={0Ty;(t)) :i € I,t €[0,T]} open,
such that it holds

yi(t) = hoiy(t) forallieI andt e [0,T).

For any solution of Problem 1’ it holds d = d.
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SOIVing for (7 7 (‘El())lefﬂ /7

How to search for (d, f, (#(-))icr, h, ) that solve Problem 1'?

8/28



A good 6 is “almost” sufficient

Proposition

Let d € N and § : R™ — RY be continuously differentiable,
injective on Y and such that §(Y) C R is open. Then d = d and
there exists f :R? - R%, h: RY — R™ continuous, such that for
ielandte[0,T], 2;(t) :== g(yi(t)) it holds

Tit+1) = f(@()
vi(t) = h
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Proof: Sketch. By the invariance of domain it holds d =d. For
the rest, set h = §|;1 and extend continuously to R¢ and

fi=gohofogoh.
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A good 6 is “almost” sufficient

Proposition

Let d € N and § : R™ — RY be continuously differentiable,
injective on Y and such that §(Y) € R is open. Then d = d and
there exists f : R — R?, h: R — R™ continuous, such that for
ielandte[0,T], 2;(t) :== g(yi(t)) it holds

zi(t) = f(@(t))
yit) = h(Zi(D)).

Proof: Sketch. By the invariance of domain it holds d =d. For
the rest, set h = g{;l and extend continuously to R? and

fi=gohofogoh.



Learning f.h

Once we have chosen a candidate 6 € Rmxd (i.e. gly) = 0Ty)
estimating f and h is a learning task:

Find & : R? — R™ and f : R? — RY with
h(@y() =y(t) and 6Tyt +1) = F(8"y())

for all observations y(t).
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Solving for 0 first
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Solving for 0 first

From z(t + 1) = f(z(t)) and y = h(z) and = 8y we infer

y(t+1) = h(f(z(t)) = (f(0"y(1) = Ay(t)).
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Solving for 0 first

From z(t + 1) = f(z(t)) and y = h(z) and = 8y we infer

y(t +1) = h(f(2(t))) = R(F(8Ty(1))) = Aly(t)).
We formulate the question

Can we identify 6 from A?
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Solving for 0 first

From z(t + 1) = f(z(t)) and y = h(z) and = 8y we infer

y(t +1) = h(f(2(t))) = R(F(8Ty(1))) = Aly(t)).
We formulate the question
Can we identify 6 from A?

No! The vector field A is not unique.
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Non-uniqueness of A; an example

Consider the following one-dimensional linear system
1
with observations y = (x,z)” € R%. Then we have
(£
22(

t

)= )

~—
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Non-uniqueness of A; an example

Consider the following one-dimensional linear system

1

z(t+1) = —ix(t)

with observations y = (x, )T € R% Then we have

Ai(y(t))

(3w

= yt+1)

- ;(} 8)y::A2<y<t>>
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Non-uniqueness of A; an example

Consider the following one-dimensional linear system

1

z(t+1) = —ix(t)

with observations y = (x, )T € R% Then we have

Ai(y(t))

-

10
01

= yt+1)

_ (10
2\ 1 0

> y(t)

) y = As(y(t))

And only one of the vector fields A, As has a low-dimensional

structure.
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A closer look at y(t + 1)

We have

y(t+1) = h(f(x(t) = h(f(07y(t) = Aly) = A0 y)

for
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A closer look at y(t + 1)

We have

y(t+1) = h(f(x(t) = h(f(07y(t) = Aly) = A0 y)

for

A(z) = h(f(2)).

For this choice of A, we have

DA(y) = DA(67 )67,

We can access 6 from DA(y)!
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Proposition

A € CHR™;R™) and 6 € R™*? such that
Q ForallyeY it holds y(t + 1) = A(y(t))
Q Forall z € conv(Y): DA(z) = M(2)87 with M(z) € R™*¢
© Foryi,y2 € Y we have

y1(t) # ya(t) implies y1(t + 1) # ya(t + 1).

Then the map y — 0Ty is injective on Y.

15/28



Proposition

.
|
1

A € CHR™;R™) and § € R™*¢ such that
Q ForallyeY it holds y(t + 1) = A(y(t))
Q Forall z € conv(Y): DA(z) = M(2)87 with M(z) € R™*¢
© Foryi,y2 € Y we have

y1(t) # y2(t) implies y1(t + 1) # ya(t + 1).

Then the map y — 0Ty is injective on Y. )

Proof: Let y1,y2 € Y with HTyl = 6Ty,. We have
p(t+1) —yp(t+1) = A(y(t) — AQn(t))
= / —A(y1 + s(y2 —y1)) ds

/ M(ys + tly — 1)) 07 (g2 — 1) dt = 0.
0 —

By the third condition in the statement, we conclude y; = yo. [ 1528



Finding 6: A convex optimization approach

Recall
DA(y) = DAOTy)0T  for all y,
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Finding 6: A convex optimization approach

Recall
DA(y) = DAOTy)0T  for all y,

and, hence,
ran((DA(w)T, ..., DA(wy)T) C ran 6

for points wy,...,wy € R™,
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Finding 6: An optimization approach

For points wy, ..., wy € conv(Y") consider
i k((DA(wq)T,...,DA T
min rank((DA(w1)", ..., DA(wn)"))

st. y(t+1)=A(y(t)) forallyeY andt € T

where F is a class of candidate functions from R™ to R™.
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Choosing d,o
Q Let A* be a minimizer

@ (U,%,V) be the singular value decomposition of
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© Choose d € N such that oi> 05, and O < 1

©Q Choose 0 to be the first d columns of U.
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For points wy, ..., wy € conv(Y") consider
i k((DA(wq)T,...,DA T
min rank((DA(w1)", ..., DA(wn)"))

st. y(t+1)=A(y(t)) forallyeY andt € T
where F is a class of candidate functions from R™ to R™.

Choosing d,o
Q Let A* be a minimizer

@ (U,%,V) be the singular value decomposition of
(DA(wy)T, ..., DA(wy)T)
© Choose d € N such that oi> 05, and O < 1

©Q Choose 0 to be the first d columns of U.
Non-convex!

We use a convex relaxation.
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Finding 6: A convex optimization approach

For points wy, ..., wy € conv(Y') consider
min rank((DA(w1)?, ..., DA(wN)T))
AeF

st. ylt+1)=A(y(t)) forallyeY andt € T
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Finding 6: A convex optimization approach

For points wy, ..., wy € conv(Y') consider
min
AeF
st. ylt+1)=A(y(t)) forallyeY andt € T

where ||B||x = Y_ 0;(B) the trace norm of a matrix B.
i
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Finding 6: A convex optimization approach

For points wy, ..., wy € conv(Y') consider
min
AeF
st. ylt+1)=A(y(t)) forallyeY andt € T

where ||B||x = Y_ 0;(B) the trace norm of a matrix B.
i

Convex!
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Soft constraining the problem

For (yl,yf), el (yM,y]D) and wy,...,wy € conv{yy,...,ym}
we solve

M
min ﬁ;l!yT—A(yz’)H% +ul(DA(w1)", ..., DA(wN)")) [«
+R(A)

where (1 is a penalty parameter and R(A) describes a
regularization penalty.
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Soft constraining the problem

For (yl,yf), el (yM,y]D) and wy,...,wy € conv{yy,...,ym}
we solve

M
min ﬁ;l!yf—fl(yi)\l% +ul(DA(w1)", ..., DA(wN)")) [«
+R(A)

where (1 is a penalty parameter and R(A) describes a
regularization penalty.

Solving the optimization problem: We use a primal-dual
formulation and use projected accelerated gradient descent.
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Numerical examples
Example (Linear systems)

Consider

z(t+1) = Axz(t)
y(t) = Cx(t)

with C' € R™*? with ker C = {0}.
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Proper orthogonal decomposition: Find
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matrix (y1,...,Yn)-
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Numerical examples
Example (Linear systems)

Consider

z(t+1) = Axz(t)
y(t) = Cx(t)

with €' € R™*? with ker C' = {0}. C : R? — ran(C) is an
isomorphism.

Proper orthogonal decomposition: Find

V :=ran(C) = Span{y : y € Y}, select an ONB 0;,...,0; € R™
of V and set § = (1, ...,0,). This is done by SVD for the data
matrix (y1,...,Yn)-

Our approach: The solution of our optimization problem does

something similar, except that 6 does not consist of singular
vectors.
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De-Koopmanizing

Consider

SCl(t—|-1) = *:131(75)
mat41) = goad) + 2 (0).

and
2 3 .2 .2 4
h(l’l, ‘,172) - (xlu T2, X1, X1T2, T, Lo, LT, xl)‘
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De-Koopmanizing

Consider

SCl(t—|-1) = *:131(75)
mat41) = goad) + 2 (0).

and

2 3,2 .2 4
h(l’l, ‘,172) - (xlu T2, X1, X1T2, T, Lo, LT, xl)‘

Our approach recovers the 2-dimensional structure of the problem
and that there is only one asymptotically stable fixed point.
However, the system we obtain and the original system are not
diffeomorphically conjugated.
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.’i‘l = X1X9
g 2
Ty = T2+ 2
2 2 2
y = (z1,%2,27,25,T1%2,3%1 — ).

We generated 250 random samples of initial conditions
z(0) € [0,2]%.
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Singular values

Logarithmic scale

-20

Figure: First three
of sample points.
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Figure: Error of the estimation of the state 3 via the constructed latent
system for different number of sample points.
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Error for matching y

/ | |
0.02 , / V

o . . .
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Number of samples

250

Figure: Error of the estimation of the state y via the constructed latent
system for different number of sample points.
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Computation time

log time

L I L L
2 2.5 3 3.5 4 4.5 5 5.5 6

log number of samples

Figure: Log-log plot of computation time; solved in Matlab with CVX on
a laptop.
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Merci |
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Merci |

Questions?
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Example: Linear reconstruction

Consider the system

z = Az
y = H(z):= (Cz,h(z)) € R™ x R™

for an invertible matrix A € R4xd 3 mgtrix C : R4 — R™ with
ker C' = {0} and a differentiable map H : R — R™2.

.




Example: Two-dimensional spiral

Example (Two dimensional spiral)

In this example, we treat the “two-dimensional spiral”:

T, = 1, xl(O)GR
Ty9 = 1, xl(O)GR

y = h(zx1,x2) = (21,22, cos(x1 + z2),sin(z1 + z2)).
For 1,22 € R and (y1,...,y4) =y = h(z1, z2) it holds
gy = (1,1, —sin(z1 + z2),cos(x1 + x2)) = (1,1, —ya4, y3)-

This motivates to define the (affine) vector field A : R* — R* by
Ay, .- ya) := (1,1, —y4,ys3). But A forgets about the “height”.)




When the recovery map g : Y — R% is non-linear but known to live
in a function space F with basis ¢ = (¢1,...,¢,), we can perform
a lifting.

Assume it holds x = g(y) for some g = 67 ¢(y). Consider the
extended observation map h := ¢ o h, i.e. we observe
z(x) == (¢ o h)(xz) = ¢(y) system it holds

z =0T

Proof: It follows immediately that z = 67 ¢(y) = 07 2. O



Unique velocity condition

To find a good candidate #, we imposed the “unique velocity
condition”:

y1,y2 € Y with yy # yo implies yi (t +1) # y2(t +1).

Considering time ¢ as an additional state y,,,+1(t) = t, we can
always guarantee the “unique velocity condition” through lifting.

Let ¢ : R™+1 — R3™+1 pbe given by

DY) = Y1y oy Ymt1s Yis - s Yoot ls Y1Ymet1s -« « » YmYmt1)-

Then the “unique velocity condition” holds for the extended
observation z = ¢(y).

A
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