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Setting

We consider

x(t+ 1) = f(x(t)), x(0) = x0 ∈ Rd

y = h(x)

for a continuous vector field f : Rd → Rd and a continuous
observation map h : Rd → Rm.
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h : Rd → Rm.

1 We observe trajectories y

2 f , h, d and x are unknown and we want to identify them.
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Possibly possible applications
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Assumptions for the rest of the talk

We assume that the maps f, g, h are unknown but satisfy

1 f : Rd → Rd is continuously differentiable

2 h : Rd → Rm is continuously differentiable and injective (thus
m ≥ d and typically m ≫ d)

3 We call g := h−1 : h(Rd) → Rd the inverse of h and assume it
is of the form

g(y) = θT y

for some θ ∈ Rm×d.

We observe yi(t) = h(xi(t)), i ∈ I, at times t ∈ Ti ⊂ N0.
We denote the set of observed points by

Y := {y ∈ Rm : y = yi(t), i ∈ I, t ∈ Ti}.
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Problem formulation 1

Problem (1)

For the given data (yi(·))i∈I , find (d̃, f̃ , (x̃i(·))i∈I , h̃, θ̃) where
1 d̃ ∈ N
2 f̃ : Rd̃ → Rd̃ is continuously differentiable

3 x̃i : Ti → Rd̃ solving x̃(t+ 1) = f̃(x(t)), for all i ∈ I

4 θ̃ ∈ Rm×d̃ is with x̃i(·) = θ̃T yi(·) for all i ∈ I

5 h̃ : Rd̃ → Rm is continuously differentiable and injective on
X̃ := {θ̃T yi(t)) : i ∈ I, t ∈ Ti},

such that it holds

yi(t) = h̃ ◦ x̃i(t) for all i ∈ I and t ∈ Ti.
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Non-uniqueness and pathological solutions

The problem formulation is coordinate-free. A change of
coordinates in the latent system induces a “different solution“.
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Non-uniqueness and pathological solutions

The problem formulation is coordinate free. A change of
coordinates in the latent system induces a “different solution“.

If I and Ti are discrete, then, by interpolation, we can always find
a solution with d̃ = 1. This does not represent the topology of the
latent system.

Assumption

We assume that the set X := {xi(t) ∈ Rd : i ∈ I, t ∈ Ti} is open
in Rd and Ti = [0, T ] for all i ∈ I.
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Problem formulation 1’

Problem (1’)

For the given data (yi(·))i∈I , find (d̃, f̃ , (x̃i(·))i∈I , h̃, θ̃) where
1 d̃ ∈ N
2 f̃ : Rd̃ → Rd̃ is continuously differentiable

3 x̃i : Ti → Rd̃ solving x̃(t+ 1) = f̃(x(t)), for all i ∈ I

4 θ̃ ∈ Rm×d̃ is with x̃i(·) = θ̃T yi(·) for all i ∈ I

5 h̃ : Rd̃ → Rm is continuously differentiable and injective on
X̃ := {θ̃T yi(t)) : i ∈ I, t ∈ [0, T ]} open,

such that it holds

yi(t) = h̃ ◦ x̃i(t) for all i ∈ I and t ∈ [0, T ].

Lemma

For any solution of Problem 1’ it holds d̃ = d.
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Solving for (d̃, f̃ , (x̃i(·))i∈I , h̃, θ̃)

How to search for (d̃, f̃ , (x̃i(·))i∈I , h̃, θ̃) that solve Problem 1’?
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A good θ is “almost” sufficient

Proposition

Let d̃ ∈ N and g̃ : Rm → Rd̃ be continuously differentiable,
injective on Y and such that g̃(Y ) ⊂ Rd̃ is open. Then d̃ = d and
there exists f̃ : Rd → Rd, h̃ : Rd → Rm continuous, such that for
i ∈ I and t ∈ [0, T ], x̃i(t) := g̃(yi(t)) it holds

x̃i(t+ 1) = f̃(x̃i(t))

yi(t) = h̃(x̃i(t)).

Proof: Sketch. By the invariance of domain it holds d̃ = d. For
the rest, set h̃ = g̃

∣∣−1

Y
and extend continuously to Rd and

f̃ := g̃ ◦ h ◦ f ◦ g ◦ h̃.

□
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Learning f̃ , h̃

Once we have chosen a candidate θ̃ ∈ Rm×d̃ (i.e. g̃(y) = θ̃T y)
estimating f̃ and h̃ is a learning task:

Find h̃ : Rd̃ → Rm and f̃ : Rd̃ → Rd̃ with

h̃(θ̃T y(t)) = y(t) and θ̃T y(t+ 1) = f̃(θ̃T y(t))

for all observations y(t).

10 / 28



Solving for θ first

From x(t+ 1) = f(x(t)) and y = h(x) and x = θT y we infer

y(t+ 1) = h(f(x(t))) = h(f(θT y(t))) =: A(y(t)).

We formulate the question

Can we identify θ from A?

No! The vector field A is not unique.
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Non-uniqueness of A; an example

Consider the following one-dimensional linear system

x(t+ 1) = −1

2
x(t)

with observations y = (x, x)T ∈ R2. Then we have

1

2

(
1 0
0 1

)
y =

(
1
2x(t)
1
2x(t)

)
= y(t+1) =

1

2

(
1 0
1 0

)
y =: A2(y)

And only one of the vector fields A1, A2 has a low-dimensional
structure.
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A closer look at y(t+ 1)

We have

y(t+ 1) = h(f(x(t)) = h(f(θT y(t))) = A(y) = Ā(θT y)

for
Ā(z) := h(f(z)).

For this choice of A, we have

DA(y) = DĀ(θT y)θT .

We can access θ̃ from DA(y)!
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Proposition

A ∈ C1(Rm;Rm) and θ̃ ∈ Rm×d̃ such that

1 For all y ∈ Y it holds y(t+ 1) = A(y(t))

2 For all z ∈ conv(Y ): DA(z) = M(z)θ̃T with M(z) ∈ Rm×d

3 For y1, y2 ∈ Y we have

y1(t) ̸= y2(t) implies y1(t+ 1) ̸= y2(t+ 1).

Then the map y 7→ θ̃T y is injective on Y .

Proof: Let y1, y2 ∈ Y with θT y1 = θ̃T y2. We have

y2(t+ 1)− y1(t+ 1) = A(y2(t))−A(y1(t))

=

∫ 1

0

d

ds
A(y1 + s(y2 − y1)) ds

=

∫ 1

0
M(y1 + t(y2 − y1)) θ̃

T (y2 − y1)︸ ︷︷ ︸
=0

dt = 0.

By the third condition in the statement, we conclude y1 = y2. □
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Finding θ: A convex optimization approach

Recall
DA(y) = DĀ(θT y)θT for all y,

and, hence,

ran((DA(w1)
T , . . . ,DA(wN )T ) ⊂ ran θ

for points w1, . . . , wN ∈ Rm.
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Finding θ: An optimization approach

For points w1, . . . , wN ∈ conv(Y ) consider

min
A∈F

rank((DA(w1)
T , . . . ,DA(wN )T ))

s.t. y(t+ 1) = A(y(t)) for all y ∈ Y and t ∈ T

where F is a class of candidate functions from Rm to Rm.

Choosing d̃, θ̃

1 Let A∗ be a minimizer

2 (U,Σ, V ) be the singular value decomposition of
(DA(w1)

T , . . . ,DA(wN )T )

3 Choose d̃ ∈ N such that σd̃ ≫ σd̃+1 and σd̃+1 ≪ 1

4 Choose θ̃ to be the first d̃ columns of U .

Non-convex!

We use a convex relaxation.
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Finding θ: A convex optimization approach

For points w1, . . . , wN ∈ conv(Y ) consider

min
A∈F

rank((DA(w1)
T , . . . ,DA(wN )T ))

s.t. y(t+ 1) = A(y(t)) for all y ∈ Y and t ∈ T

where ∥B∥∗ =
∑
i
σi(B) the nuclear norm of a matrix B.

Convex!
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Soft constraining the problem

For (y1, y
+
1 ), . . . , (yM , y+M ) and w1, . . . , wN ∈ conv{y1, . . . , yM}

we solve

min
A∈F

1
M

M∑
i=1

∥y+i −A(yi)∥22 +µ∥(DA(w1)
T , . . . ,DA(wN )T ))∥∗

+R(A)

where µ is a penalty parameter and R(A) describes a
regularization penalty.

Solving the optimization problem: We use a primal-dual
formulation and use projected accelerated gradient descent.
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Numerical examples

Example (Linear systems)

Consider

x(t+ 1) = Ax(t)

y(t) = Cx(t)

with C ∈ Rm×d with kerC = {0}.

C : Rd → ran(C) is an
isomorphism.
Proper orthogonal decomposition: Find
V := ran(C) = Span{y : y ∈ Y }, select an ONB θ̃1, . . . , θ̃d ∈ Rm

of V and set θ̃ = (θ̃1, . . . , θ̃d). This is done by SVD for the data
matrix (y1, . . . , yN ).
Our approach: The solution of our optimization problem does
something similar, except that θ̃ does not consist of singular
vectors.
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De-Koopmanizing

Consider

Example

x1(t+ 1) =
1

2
x1(t)

x2(t+ 1) =
1

2
x2(t) + x21(t).

and
h(x1, x2) = (x1, x2, x

2
1, x1x2, x

3
1, x

2
2, x

2
1x2, x

4
1).

Our approach recovers the 2-dimensional structure of the problem
and that there is only one asymptotically stable fixed point.
However, the system we obtain and the original system are not
diffeomorphically conjugated.
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Example

ẋ1 = x1x2

ẋ2 = x2 + x21

y = (x1, x2, x
2
1, x

2
2, x1x2, 3x1 − x22).

We generated 250 random samples of initial conditions
x(0) ∈ [0, 2]2.
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Singular values

Figure: First three singular values of the matrix W for different number
of sample points.
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Matching ẏ

,

Figure: Error of the estimation of the state ẏ via the constructed latent
system for different number of sample points.
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Matching y

Figure: Error of the estimation of the state y via the constructed latent
system for different number of sample points.
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Computation time

Figure: Log-log plot of computation time; solved in Matlab with CVX on
a laptop.
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Example: Linear reconstruction

Example

Consider the system

ẋ = Ax

y = H(x) := (Cx, h̄(x)) ∈ Rm1 × Rm2

for an invertible matrix A ∈ Rd×d, a matrix C : Rd → Rm1 with
kerC = {0} and a differentiable map H̄ : Rd → Rm2 .



Example: Two-dimensional spiral

Example (Two dimensional spiral)

In this example, we treat the “two-dimensional spiral”:

ẋ1 = 1, x1(0) ∈ R
ẋ2 = 1, x1(0) ∈ R
y = h(x1, x2) := (x1, x2, cos(x1 + x2), sin(x1 + x2)).

For x1, x2 ∈ R and (y1, . . . , y4) = y = h(x1, x2) it holds

ẏ = (1, 1,− sin(x1 + x2), cos(x1 + x2)) = (1, 1,−y4, y3).

This motivates to define the (affine) vector field A : R4 → R4 by
A(y1, . . . , y4) := (1, 1,−y4, y3). But A forgets about the “height”.



Lifting

When the recovery map g : Y → Rd is non-linear but known to live
in a function space F with basis ϕ = (ϕ1, . . . , ϕp), we can perform
a lifting.

Lemma

Assume it holds x = g(y) for some g = θTϕ(y). Consider the
extended observation map h̄ := ϕ ◦ h, i.e. we observe
z(x) := (ϕ ◦ h)(x) = ϕ(y) system it holds

x = θT z.

Proof: It follows immediately that x = θTϕ(y) = θT z. □



Unique velocity condition

To find a good candidate θ, we imposed the “unique velocity
condition”:

y1, y2 ∈ Y with y1 ̸= y2 implies y1(t+ 1) ̸= y2(t+ 1).

Considering time t as an additional state ym+1(t) = t, we can
always guarantee the “unique velocity condition” through lifting.

Lemma

Let ϕ : Rm+1 → R3m+1 be given by

ϕ(y) := (y1, . . . , ym+1, y
2
1, . . . , y

2
m+1, y1ym+1, . . . , ymym+1).

Then the “unique velocity condition” holds for the extended
observation z = ϕ(y).
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