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1. Federated Learning
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Federated learning

“Federated learning is a machine learning setting where multiple entities (clients) collaborate in solving

a machine learning problem, under the coordination of a central server or service provider. Each

client’s raw data is stored locally and not exchanged or transferred; instead, focused updates intended

for immediate aggregation are used to achieve the learning objective.” - [KMA+21]

Nowadays, cross-device FL mechanisms are widely used:

• Medical research [CKLT18, BCM+18];

• Distributed systems [XIZ+23];

• Gboard mobile keyboard, Android messages, Apple’s Siri [EPK14, Pic19].
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Scheme

Figure: Federated learning
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Structure of FL methods

Thus, federated learning consists of three key components:

• Server update

• Broadcasting (compression)

• Local computation
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Simplest setting

Standard FL setting:

min
x∈Rd

f (x), where f (x) := 1

n

n∑
i=1

fi(x).

• 1 server, n clients
• Each fi is stored on the client i .
• The clients in parallel do local computation (local GD) and broadcast to the server.

• Server aggregates and sends back the new iterate in parallel.
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Distributed Gradient Descent

The famous gradient descent algorithm can be implemented in this way.

Algorithm 1: Distributed Gradient Descent
Input: Stepsizes γk > 0 for k ≥ 0, starting point

x0 ∈ Rd

for k = 0, 1, 2, . . . do
The server broadcasts the current iterate xk .
The i-th client computes the local step:
x i

k+1 = xk − γk∇fi(xk).
Broadcasts to the server.
The server aggregates the iterates:
xk+1 =

1
n
∑n

i=1 x i
k+1.

When d is large, communication complexity becomes the bottleneck.
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Communication complexity

Definition (Informal)

Communication Complexity = (# of bits)× (# of communication rounds).

There are two general ways to reduce communication complexity:

• Compression of the gradients or the iterates: [RSF21, SHR21, SSR22].
Examples: Rand-k , Top-k , quantization, sign compressors etc.;

• Local methods: Domore/better local computations, so that the number of
communication rounds is reduced. [MMSR22, MSR22].
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2. The mathematical framework of the cross-device setting
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Cross-device setting

This paper focuses on
:::::::::::
cross-device training:

• Clients are mobile or IoT devices [KJK+21].

• The number of clients n is large (billions).
• Here, one cannot hope to have access to full gradient at any time.

• Thus, finite-sum formulation is not suitable for this setting. It is applicable to other FL
settings, such as cross-silo training, where the number of clients is moderate.
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Hardware Heterogeneity

Figure: Data heterogeneity as depicted in [LSTS20].

• Asyncronous training
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Data Heterogeneity

Figure: The divergence of SGD iterates for homogeneous and heterogeneous clients for the
cross-entropy loss for neural networks. Courtesy of [ZLL+18].

Statistical/Data heterogeneity of the clients may affect learning [AASC19, SMAT22]:

• personalization, recommendation, fraud detection, etc.
• since traditional ML training algorithms are designed for central or distributed
computation environments where data partitioning can be tightly controlled.
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Notation

• ∇f for the gradient;
• ‖·‖ for the Euclidean norm;
• E[·] for the expectation.
• Unif(S) denotes uniform distribution over the discrete set S .
• Index i is used for a non-random client

• ξ ∼ D is used for a randomly selected client.

13



14

3. Assumptions and Background
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Mathematical formulation

Instead, we study the following stochastic optimization problem:

min
x∈Rd

f (x), where f (x) := Eξ∼D[fξ(x)], (Stoch.Opt.)

where fξ may be ::::::::::
non-convex.

• Here, fξ corresponds to the loss of client ξ on its local data [KJK+21].
• We cannot have access to the full function f , nor its gradient;
• Each client participates in the training process only a few times or maybe once.

• We assume that the gradient and the expectation are interchangeable, meaning

Eξ∼D[∇fξ(x)] = ∇f (x), for ∀x ∈ Rd .

.

15



16

Bounded variance

We aim to solve the stochastic optimization problem

min
x∈Rd

f (x), where f (x) := Eξ∼D[fξ(x)], (Stoch.Opt.)

Here, fξ and consequently f are potentially non-convex.

Assumption (Bounded variance)

We assume there exists σ ≥ 0 such that for any x ∈ Rd

Eξ∼D

[
‖∇fξ(x)−∇f (x)‖2

]
≤ σ2.

• This is a standard assumption in stochastic optimization.
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Second-order heterogeneity

Assumption (Hessian similarity)

Assume there exists δ ≥ 0 such that for any i and x, y ∈ Rd

‖∇fi(x)−∇f (x)−∇fi(y) +∇f (y)‖ ≤ δ‖x − y‖. (1)

• Some prior work consider ‖∇fi(x)−∇f (x)‖ ≤ δ instead of these two assumptions,
but this is rather restrictive.

• [KJ22] showed that for fi ∈ C2(Rd), (1) is equivalent to
∥∥∇2fi(x)−∇2f (x)

∥∥
op ≤ δ.

• (1) is satisfied for ridge regression with NNs [MLFV23].

• (1) replaces the smoothness assumption.
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Proximal point method (PPM)

The proximal point operator of a real-valued function g : Rd → R is defined as the solution of
the following optimization

proxg(x) := arg min
y∈Rd

{
g(y) + 1

2
‖x − y‖2

}
.

Algorithm 2: Stochastic Proximal Point Method (SPPM)

Input: Stepsizes γk > 0 for k ≥ 0, starting point x0 ∈ Rd

for k = 0, 1, 2, . . . do
The server: samples ξk ∼ D;
The selected client:
computes xk+1 ∈ proxγkfξk

(xk);

sends xk+1 to the server;

For one client, using stationarity criterion, this is equivalent to implicit gradient descent:

xk+1 = xk − γk∇f (xk+1).
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Convergence of SPPM in the strongly-convex regime
Theorem

Let fξ and f be µ-strongly convex. Define σ2
∗ := Eξ∼D

[
‖∇fξ(x∗)‖2

]
, where x∗ is the

optimum. Let x0 ∈ Rd be an arbitrary starting point. Then for any k ≥ 0 and any γk = γ > 0,
the iterates of SPPM satisfy

E
[
‖xk − x∗‖2

]
≤

(
1

1 + γµ

)2k (
‖x0 − x∗‖2 + γσ2

∗
µ2

+
2

µ

)
. (2)

• In order to remove dependence of σ∗, variance reduction mechanisms are applied:

xk+1 ∈ proxγkfξk
(xk − γkgk),

where gk is an auxiliary sequence that ”estimates” the gradient.

• If gk = ∇fξk(x∗), then the σ2
∗ term in (2) vanishes. Thus, one would like gk to gradually

estimate∇fξk(x∗).
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Momentum-based Variance Reduction

MVR is a momentum-based variance reduction method for solving (Stoch.Opt.) that avoids
large batch sizes [CO19].

Algorithm 3: MVR

Input: Stepsizes γk , momentum weight parameter pk , starting point x0 ∈ Rd

for k = 0, 1, 2, . . . do
The server: samples ξk ∼ D;
sends xk and gk to the client ξk ;

The selected client:
xk+1 = xk − γkgk ;
gk+1 = ∇fξk(xk) + (1− pk)(gk −∇fξk(xk−1));
sends xk+1 and gk+1 to the server;

• gk is the momentum-based gradient estimate.
• Faster convergence than standard SGD.
• Adaptive variance reduction without large batch sizes.
• No extra memory overhead. 20
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4. SPAM = SPPM + MVR
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Pseudocode: SPAM

Algorithm 4: SPAM

Input: Starting point x0 = x−1 ∈ Rd , initialize g0 = g−1, choose γk > 0 and pk > 0
for k = 0, 1, 2, . . . do

The server: ;
Samples ξk ∼ D;
Sends xk , gk−1 to the client ξk ;

The selected client: ;
gk = ∇fξk(xk) + (1− pk)(gk−1 −∇fξk(xk−1)) (MVR);
xk+1 ∈ proxγkfξk

(
xk + γk(∇fξk(xk)− gk)

)
(SPPM);

Sends xk+1, gk to the server;

• Notice that:

xk+1 = arg min
y∈Rd

{
γkfξk(y) + γk〈gk −∇fξk(xk), y − xk〉+

‖y − xk‖2

2

}
.
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Convergence result

Theorem (Fixed parameters)

Let, x̃K+1 ∼ Unif({x1, x2, . . . , xK+1}) and F := f (x0)− finf. Then, for fixed stepsizes
γk = γ s.t. γ ≤ O(1/δ) andmomentum parameters pk = p, we have

E
[
‖∇f (x̃K+1)‖2

]
≤ 32F

γK
+

32‖g0 −∇f (x0)‖2

(2p − p2)K
+ 64pσ2.

• More details on the conditions of parameters p, γ can be found in the paper.
• The last term does not depend onK . To remove the constant term, one can use
decreasing stepsizes. See Theorem 2 of the paper.
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Communication Complexity
Corollary

Choose

• γk = γ = min
(
1
δ ,
( F
2δ2σ2K

)1/3)
,

• pk = p = max(γ2δ2, 1/K).

Then, the communication complexity of SPAM, to obtain

E
[
‖∇f (x̃K+1)‖2

]
≤ ε error is of order O

(
δF + σ2

ε
+

δσF
ε3/2

)
.

• That is we can initialize g0 = ∇f (x0). In that case, we obtain the communication
complexity ofO

(
δF
ε + δσF

ε3/2

)
.

• Suppose all the clients are the same. Then, δ = 0 and each local gradient is the global
one. Thus,

:::
we

::
do

::::
not

:::::
need

::
to

:::::::::::::
communicate.
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Comparison of the settings

Algorithm Paper Hessian Sim. PP No Smoothness Cross-Device Server Local

FedProx [LSZ+20] 7 4 4 4 – PPM

SABER [MLFV23] 4 7 4 7 PAGE PPM

MIME [KJK+20] 4 7 7 4 MVR SGD

CE-LSGD [PWW+22] 4 4 7 4 MVR SARAH

SPAM This work 4 4 4 4 MVR PPM

Table: Comparison of the proposed algorithm with other relevant methods.

• Here PPmeans partial participation. That is when we sample several clients at each
iteration. We will not discuss it here. See Section 5 of the paper.

• All the other methods for the Cross-device setting, require SGD-type methods for local
computation. This requires smoothness of the objective.
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Approximate proximal operator

• Computing the exact proximal operator in SPAM at every iteration is costly.

Definition (a-proxε(·))

For a given client k , a gradient estimator gk , a current state xk , a stepsize γk and a precision
level ε, the approximate proximal point a-proxε(xk , gk , γk , k) is the set of vectors yap, which
satisfy

• decrease in function value: E[φk(yap)] ≤ φk(xk),

• approximate stationarity: E
[
‖∇φk(yap)‖2

]
≤ ε2.

where φk is defined as

φk(y) := fξk(y) + 〈gk −∇fξk(xk), y − xk〉+
‖y − xk‖2

2γk
.
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Pseudocode: SPAM-inexact

Algorithm 5: SPAM-inexact

Input: Starting point x0 = x−1 ∈ Rd , initialize g0 = g−1, choose γk > 0 and pk > 0
for k = 0, 1, 2, . . . do

The server: ;
Samples ξk ∼ D;
Sends xk , gk−1 to the client ξk ;

The selected client: ;
gk = ∇fξk(xk) + (1− pk)(gk−1 −∇fξk(xk−1)) (MVR);
xk+1 ∈ a-proxε(xk , gk , γk , ξk)

:::::::::::::::::::
(a-prox);

The selected client: Sends xk+1, gk to the server;
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Convergence of SPAM-inexact

Theorem (SPAM-inexact)

Consider SPAM-inexact for an objective function f that satisfies Assumptions 1 and 2. Let γk be

a sequence of varying stepsizes satisfying γ2k ≤ 1
16δ2

and choose pk =
96δ2γ2

k
96δ2γ2

k+1
. Then,

K∑
k=1

γkE
[
‖∇f (xk+1)‖2

]
ΓK

≤ 40V0

ΓK
+

ε2

8
+

K∑
k=1

2pkγ
2
kσ

2

ΓK
.

where ΓK =
∑K

k=1 γk .

• We observe that the term with σ2 depends onK .

• The approximation error ε of the inexact prox appears in the result.

28



29

5. Experiments and Conclusion
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Plot: SPAM-inexact vs CE-LGD
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Figure: Comparison of SPAM-inexact (γ = 5/δ) and CE-LGDwith different p and number of local steps
for distributed ridge regression.
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Plot: SPAM-inexact
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Figure: Convergence of SPAM-inexactwith different p and γ for distributed ridge regression.
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Conclusion

• SPAM is an algorithm for cross-device federated learning, which combines SPPM and MVR.

• Assuming second-order heterogeneity and bounded variance conditions, SPAM does not
need smoothness of the objective.

• In its most general form, SPAM achieves faster communication complexity than its
competitors.

• Furthermore, it does not prescribe a specific local method for analysis, providing
practitioners with flexibility and responsibility in selecting suitable local solver.

Future work

• Assessing empirical performance on a real cross-device setting.

• Add local stochastic gradients.

• Design adaptive stepsize schedules that do not depend on δ and σ2. This, however
remains open also for MVR.
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This is the last slide.
Thank you!
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