Sensitivity analysis for the Chemical Master Equation

<u>A. Bottois¹</u> L. Pfeiffer¹ J. Ruess²

Séminaire d'Automatique du Plateau de Saclay

10th April 2025

ANR project OPT-MC (OPTimal control of Markov Chains & OPTogenetics control of Microbial Communities) between DISCO¹ team and LIFEWARE² team

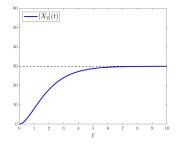
▲ロト ▲団ト ▲ヨト ▲ヨト 三国 - のへで

- The Chemical Master Equation (CME)
- A toy example of optimal control problem for the CME
- Sensitivity analysis for the CME

Simplified protein-production model ($X_1 = mRNA \& X_2 = protein$)

Chemical kinetic equation (deterministic point of view)

$$\frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{X}_1] = \lambda_1 - \mu_1[\mathsf{X}_1], \qquad \frac{\mathrm{d}}{\mathrm{d}t}[\mathsf{X}_2] = \lambda_2[\mathsf{X}_1] - \mu_2[\mathsf{X}_2].$$



Introduction

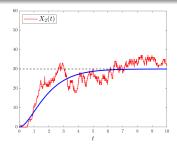
Simplified protein-production model ($X_1 = mRNA \& X_2 = protein$)

$$\varnothing \xrightarrow{\lambda_1} \mathsf{X}_1, \qquad \mathsf{X}_1 \xrightarrow{\lambda_2 x_1} \mathsf{X}_1 + \mathsf{X}_2, \qquad \mathsf{X}_1 \xrightarrow{\mu_1 x_1} \varnothing, \qquad \mathsf{X}_2 \xrightarrow{\mu_2 x_2} \varnothing.$$

Chemical Master Equation (stochastic point of view)

- \triangleright We denote by $X(t) = (X_1(t), X_2(t))$ the state of the system at time t.
- \triangleright We assume that the instants at which reactions occur are random, so that X(t) is a continuous-time Markov chain on \mathbb{N}^2 .
- \triangleright Each reaction R_r is defined by its propensity $a_r(x)$ and its stoichiometric vector ν_r .
- \sim If the system is in state x, the probability that R_r fires in time Δt is equal to $a_r(x)\Delta t$.

<u>Ex:</u> For the 2nd reaction, we have $a_2(x) = \lambda_2 x_1$ and $\nu_2 = (0, 1)$.



4/12

Introduction

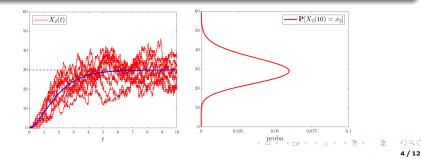
Simplified protein-production model ($X_1 = mRNA \& X_2 = protein$)

$$\varnothing \xrightarrow{\lambda_1} \mathsf{X}_1, \qquad \mathsf{X}_1 \xrightarrow{\lambda_2 x_1} \mathsf{X}_1 + \mathsf{X}_2, \qquad \mathsf{X}_1 \xrightarrow{\mu_1 x_1} \varnothing, \qquad \mathsf{X}_2 \xrightarrow{\mu_2 x_2} \varnothing.$$

Chemical Master Equation (stochastic point of view)

- \triangleright We denote by $X(t) = (X_1(t), X_2(t))$ the state of the system at time t.
- \triangleright We assume that the instants at which reactions occur are random, so that X(t) is a continuous-time Markov chain on \mathbb{N}^2 .
- \triangleright Each reaction R_r is defined by its propensity $a_r(x)$ and its stoichiometric vector ν_r .
- \sim If the system is in state x, the probability that R_r fires in time Δt is equal to $a_r(x)\Delta t$.

<u>Ex:</u> For the 2nd reaction, we have $a_2(x) = \lambda_2 x_1$ and $\nu_2 = (0, 1)$.



Chemical Master Equation

Chemical Master Equation

 \triangleright The law of X(t) satisfies a Kolmogorov equation, called the Chemical Master Equation (CME) in this context,

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{P}[X(t) = x] = \sum_{r=1}^{4} \Big(a_r(x - \nu_r)\mathbb{P}[X(t) = x - \nu_r] - a_r(x)\mathbb{P}[X(t) = x]\Big), \quad x \in \mathbb{N}^2.$$

 \sim Thus, the CME is a countable collection of coupled ODEs indexed by $\Omega = \mathbb{N}^2$.

General CME

For a set of R reactions involving d species, we set $\Omega = \mathbb{N}^d$ and $p(t, x) = \mathbb{P}[X(t) = x]$, then

$$\dot{p}(t,x) = \sum_{r=1}^{R} \left(a_r(x-\nu_r)p(t,x-\nu_r) - a_r(x)p(t,x) \right), \quad x \in \Omega$$

In what follows, the rewrite the CME in matrix form as

$$\dot{p}(t) = p(t)\mathbf{Q}$$
 and $p(0) = p_0$,

with p(t) the vector of the probabilities p(t, x) and **Q** the matrix of the propensities $a_r(x)$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Simplified protein-production model ($X_1 = mRNA \& X_2 = protein$)

$$\varnothing \xrightarrow{(1-u)\lambda_1} \mathsf{X}_1, \qquad \mathsf{X}_1 \xrightarrow{u\lambda_2 x_1} \mathsf{X}_1 + \mathsf{X}_2, \qquad \mathsf{X}_1 \xrightarrow{\mu_1 x_1} \varnothing, \qquad \mathsf{X}_2 \xrightarrow{\mu_2 x_2} \varnothing.$$

 \triangleright The control u (e.g. a light stimulus) acts globally on the system to:

- inhibit the growth of mRNAs X_1 . - strengthen the production of proteins X_2 .

 \triangleright We may want to maximize the expected number of proteins X₂ at time T, i.e. solve

$$\max_u \varphi(u), \quad \text{with} \quad \varphi(u) = \sum_{x \in \Omega} x_2 \, p_u(T, x),$$

and where p_u is solution of the controlled CME

$$\dot{p}(t) = p(t) \mathbf{Q}_{\boldsymbol{u}} \qquad \text{and} \qquad p(0) = p_0.$$

 \sim To derive the optimality conditions for this problem, we need to perform a sensitivity analysis of the CME w.r.t. the matrix Q.

6/12

CME with source term

CME with source term

In what follows, we denote by $P[\mathbf{Q}, p_0, f]$ the solution of the CME

 $\dot{p}(t) = p(t)\mathbf{Q} + f(t)$ and $p(0) = p_0$.

Existence and uniqueness

 \triangleright Depending on the growth of $a_r(x)$ as $\langle x \rangle \to +\infty$, $\mathsf{P}[\mathbf{Q}, p_0, f]$ might not be unique.

 \rightsquigarrow If $a_r(x)$ grows at most linearly as $\langle x \rangle \rightarrow +\infty$, then $\mathsf{P}[\mathbf{Q}, p_0, f]$ is unique.

 \triangleright In any case, we can work with the so-called minimal solution.

 \sim The constructive definition of the minimal solution can be used to get energy estimates.

Minimal solution

▷ Let $(\omega_n)_{n \in \mathbb{N}}$ be any sequence of finite subsets of Ω s.t. $\omega_n \uparrow \Omega$ as $n \to +\infty$. ▷ Then, the minimal solution $\mathsf{P}[\mathbf{Q}, p_0, f]$ is defined by

 $\mathsf{P}[\mathbf{Q}, p_0, f] = \lim_{n \to +\infty} \mathsf{P}_n[\mathbf{Q}, p_0, f],$

where $\mathsf{P}_n[\mathbf{Q}, p_0, f]$ is the solution of the restricted CME

 $\dot{p}(t) = p(t) \mathbf{Q}_{|\omega_n} + f(t)_{|\omega_n} \qquad \text{and} \qquad p(0) = p_{0\,|\omega_n}.$

Energy estimates

Functional setting

- $\triangleright \text{ Since the solution of the CME is a probability mass function,} \\ \text{ it naturally belongs to the space } \ell^1 \text{ of vectors } p \in \mathbb{R}^\Omega \text{ s.t. } \sum_{x \in \Omega} p(x) < +\infty.$
- ▷ Moreover, we set:
 - ℓ_1^1 the subspace of $p \in \ell^1$ with finite expected value, i.e. s.t. $\sum_{x \in \Omega} x_i p(x) < +\infty;$
 - ℓ_2^1 the subspace of $p \in \ell^1$ with finite variance, i.e. s.t. $\sum_{x \in \Omega} x_i^2 p(x) < +\infty;$
 - etc...

Energy estimates

Let $\mathsf{P}[\mathbf{Q}, p_0, f]$ be the minimal solution of the CME

$$\dot{p}(t)=p(t)\mathbf{Q}+f(t)\qquad\text{and}\qquad p(0)=p_0.$$

For $m \in \mathbb{N}$, there exists $C_m \ge 0$ s.t.

$$\left\|\mathsf{P}[\mathbf{Q},p_0,f](t)\right\|_{\ell_m^1} \le \mathsf{C}_m\Big(\|p_0\|_{\ell_m^1} + \|f\|_{L^1(\ell_m^1)}\Big), \quad t \in [0,T].$$

Sensitivity w.r.t. \mathbf{Q}

 \triangleright Let \mathbf{Q} , $\overline{\mathbf{Q}}$ be CME matrices and $p_0 \in \ell_1^1$.

 \triangleright We denote $p = \mathsf{P}[\mathbf{Q}, p_0, 0]$ and $\overline{p} = \mathsf{P}[\overline{\mathbf{Q}}, p_0, 0]$. We then have

$$p - \overline{p} = \mathsf{P}\Big[\overline{\mathbf{Q}}, 0, p\big(\mathbf{Q} - \overline{\mathbf{Q}}\big)\Big]$$

and there exists $C \ge 0$ s.t.

$$\|p(t) - \overline{p}(t)\|_{\ell^1} \le C \|p_0\|_{\ell^1_1} \|\mathbf{Q} - \overline{\mathbf{Q}}\|_{\ell^1_1,\ell^1}, \quad t \in [0,T].$$

 $\begin{array}{l} \Delta \mbox{ Since the propensities } a_r(x) \mbox{ can grow linearly as } \langle x \rangle \to +\infty, \\ \mbox{ Q and } \overline{\mathbf{Q}} \mbox{ are only bounded from } \ell_1^1 \mbox{ to } \ell^1. \end{array}$

Sensitivity w.r.t. u

Simplified protein-production model ($X_1 = mRNA \& X_2 = protein$)

$$\varnothing \xrightarrow{(1-u)\lambda_1} \mathsf{X}_1, \qquad \mathsf{X}_1 \xrightarrow{u\lambda_2 x_1} \mathsf{X}_1 + \mathsf{X}_2, \qquad \mathsf{X}_1 \xrightarrow{\mu_1 x_1} \varnothing, \qquad \mathsf{X}_2 \xrightarrow{\mu_2 x_2} \varnothing.$$

 \triangleright Here, the CME matrix is of the form $\mathbf{Q}_u = \mathbf{Q}_0 + u \, \delta \mathbf{Q}$, where $\delta \mathbf{Q} = \mathbf{Q}_1 - \mathbf{Q}_0$.

Sensitivity w.r.t. u

▷ Let $u, \overline{u} \in L^{\infty}(0, T; [0, 1])$ and $p_0 \in \ell_2^1$. ▷ We denote $p_u = \mathsf{P}[\mathbf{Q}_u, p_0, 0]$ and $p_{\overline{u}} = \mathsf{P}[\mathbf{Q}_{\overline{u}}, p_0, 0]$. We then have

$$p_{u} - p_{\overline{u}} = \mathsf{P}\Big[\mathbf{Q}_{\overline{u}}, 0, (u - \overline{u})p_{\overline{u}}\delta\mathbf{Q}\Big] + \mathsf{P}\Big[\mathbf{Q}_{\overline{u}}, 0, (u - \overline{u})(p_{u} - p_{\overline{u}})\delta\mathbf{Q}\Big].$$

▷ The 1st-order term $P[\mathbf{Q}_{\overline{u}}, 0, (u - \overline{u})p_{\overline{u}}\delta\mathbf{Q}]$ is linear w.r.t. $u - \overline{u}$. ▷ For the 2nd-order term, there exists $C' \ge 0$ s.t.

$$\left\|\mathsf{P}\Big[\mathbf{Q}_{\overline{u}},0,(\boldsymbol{u}-\overline{\boldsymbol{u}})(\boldsymbol{p}_{\boldsymbol{u}}-\boldsymbol{p}_{\overline{\boldsymbol{u}}})\delta\mathbf{Q}\Big](t)\right\|_{\ell^{1}} \leq \mathsf{C}'\|\boldsymbol{p}_{0}\|_{\ell^{1}_{2}}\|\boldsymbol{u}-\overline{\boldsymbol{u}}\|_{L^{\infty}}^{2}, \quad t\in[0,T].$$

 \rightsquigarrow For the cost $\varphi(u) = \sum_{x \in \Omega} x_2 \, p_u(T,x) \text{, we thus have}$

$$\varphi(u) - \varphi(\overline{u}) = \sum_{x \in \Omega} x_2 \operatorname{P} \Big[\mathbf{Q}_{\overline{u}}, 0, (u - \overline{u}) p_{\overline{u}} \delta \mathbf{Q} \Big] (T, x) + o \Big(\|u - \overline{u}\|_{L^{\infty}} \Big).$$

10/12

▷ Summary:

- We consider a toy example of optimal control problem for the CME.
- We use the notion of minimal solution to perform a sensitivity analysis for the CME.
- This analysis leads to a Taylor expansion of the cost w.r.t. the control and ultimately to optimality conditions.

Perspectives:

- Study relevant simple biological models.
- \rightsquigarrow grower/producer model, bursty protein production, ...
- Solve these optimal control problems numerically.

Thank you for your attention

◆□ > ◆□ > ◆三 > ◆三 > 三 のへで