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B GEOSTATISTICAL MODELING

Geostatistical paradigm: over the spatial domain D

Gaussian Random Field Observed variable
Z:{Z(p):p e D} Realization z:{z2(p): p € D}
High correlation High “similarity”

= Allows to model data which are not independent, identically distributed
= Covariance function C:
Cz; : DxD — R
(P1,p2) — Cz(p1,p2) = Cov(Z(p1), Z(p2))

— used to model the spatial structure observed on the variable/data
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B CLASSICAL APPLICATIONS OF GEOSTATISTICS

Simulation

Prediction

Filtering
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B CLASSICAL APPLICATIONS OF GEOSTATISTICS PSLR

Simulation Prediction Filtering
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All these tasks usually require to build a covariance matrix X: ‘ [X];; = Cz(pi, pj) ‘

= The covariance function C'z must be known
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® EXAMPLE: (SIMPLE) KRIGING PREDICTION PSLx

Input Observations Y (z;) at some points (x1,...,2zn,) of a spatial domain D
Y(z;) = Z(x;) + 765, 1 €{1,...,k}
= Z : Underlying (non-stationary) random field

®gq,...,6np, ~ N(0,1) iid noise
Output Kriging estimates Z*(p;) of Z some points (p1,...,pn;) of D
Computation Solve the kriging system defined by
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® EXAMPLE: (SIMPLE) KRIGING PREDICTION PSLx

Input Observations Y (z;) at some points (x1,...,2zn,) of a spatial domain D
Y(z;) = Z(x;) + 765, 1 €{1,...,k}
= Z : Underlying (non-stationary) random field

®gq,...,6np, ~ N(0,1) iid noise
Output Kriging estimates Z*(p;) of Z some points (p1,...,pn;) of D
Computation Solve the kriging system defined by

Z*(pj) :2TD(2DD+7'2I)71 Y (z;)

ETD = [COV(Z(pk), Zy(l‘l))] k<Nr S RNTXND, EDD = [COV(Z(Ik),Z($l>)]1<k<ND S RNDXND

1< <k<
1<I<Np 1<I<Np
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B CHALLENGES IN PRACTICE PSLR

Non-euclidean domains

= Extensive literature for the sphere: Marinucci and Peccati (2011);
Lang et al. (2015); Lantuéjoul et al. (2019); Emery and Porcu (2019)

Non-stationarity
® Examples of proposed methods: Karhunen-Loéve expansions
(Lindgren, 2012), Space deformation models (Sampson and Guttorp,
1992), Convolution models (Higdon et al., 1999)

Big “N” problem
= Need to restrict the choice of models to work with sparse
matrices: Compactly-supported or tapered covariance functions
(Gneiting, 2002; Furrer et al., 2006), Markovian models (Rue and Held,
2005)
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m THE SPDE APPROACH PSLR

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise

= P(—A)?2 = F71 €= P(IE]Y)'? x Z[2](€)]
where P is a polynomial, strictly positive over R

Gaussian random fields on Riemannian manifolds: Sampling and error analysis [ 6



m THE SPDE APPROACH PSLR

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise

= P(—A)?2 = F71 €= P(IE]Y)'? x Z[2](€)]
where P is a polynomial, strictly positive over R

— In particular, if P(x) = (k% + 2)®, i.e. if we consider the SPDE
(K2 = A2 =W

then Z has a Matérn covariance function
o2
Cov(Z(z + h), Z(z)) = C(||hl)) = W(”th) K (lhll), v=a-—d/2
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MATERN RANDOM FIELDS

Modéle Matérn, nu =0.5 Modéle Matérn, nu =1 Modéle Matérn, nu =2

MINES PARIS

PSL*

400 400

Simulations of Gaussian random fields with a Matérn covariance
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B A FIRST SOLUTION: THE SPDE APPROACH PSLR

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise

= P(—A)?2 = F71 €= P(IE]Y)'? x Z[2](€)]
where P is a polynomial, strictly positive over R
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ol
B A FIRST SOLUTION: THE SPDE APPROACH e

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise

= P(—A)?2 = F71 €= P(IE]Y)'? x Z[2](€)]
where P is a polynomial, strictly positive over R

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed
Non-euclidean domains, Define the SPDE on manifolds or use varying
Non-stationarity parameters
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B A FIRST SOLUTION: THE SPDE APPROACH PSLx

Basic idea: if Z is an isotropic Markovian field over R?, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density Stochastic partial differential equation (SPDE)
1 -
F:¢eRfs ——— P(-A)Y22, =W
P([I€]1%)

= W: Gaussian white noise

= P(—A)?2 = F71 €= P(IE]Y)'? x Z[2](€)]
where P is a polynomial, strictly positive over R

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Big “N" problem Use the finite element method to solve the SPDE

Gaussian random fields on Riemannian manifolds: Sampling and error analysis [ 8



® FINITE ELEMENT APPROXIMATION PSLx

P(-A)Y22, =W

= 2p)m )Y Zyp) —> ~ < » 4
j=1

True solution (left) and its finite element approximation
(right)
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® FINITE ELEMENT APPROXIMATION PSL*

P(-A)Y22, =W

— Z(P)“iZﬂ/fj(P) - ~ \ ;A |

True solution (left) and its finite element approximation
(right)

The weights Z = (Z,, ..., Z,) form a Gaussian vector with precision matrix

QZ _ Cl/2p(s)cl/2 S — C_1/2RC_1/2

» C = [(¢;,;)] = “Mass” matrix — Sparse
(and Diagonal after approx)

" R = [(Vi;, V1);)] = "Stiffness” matrix — Sparse

Q is sparse
(when deg P is relatively small)
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B APPLICATION: NON-MARKOVIAN SPECTRAL DENSITIES PSLX

(K2 = A)Y2Z =W
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® APPLICATION: RANDOM FIELDS ON SMOOTH MANIFOLDS PSLx

(K2 = A)Y2Z =W

Simulation of a Matérn field on a “full” torus (left) and some selected slices (right)
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B APPLICATION: NON-STATIONARY RANDOM FIELDS PSLx

(K2(s) — div(H(s)V))*/?2 ='W
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Example of anisotropy parameters (left) and corresponding random field simulation obtained using our method
(right), on the unit square.
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I. Random fields on Riemannian manifolds
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m DEFINITION: RIEMANNIAN MANIFOLDS PSLR

Letm>1land1<d<m

M := (D, g) is a compact Riemannian (sub)manifold of dimension d

= D C R™ is a smooth (sub)manifold
— Locally Euclidean of dimension d

— Can be entirely mapped by a set of
smoothly compatible charts

Ex: Euclidean domains, smooth surfaces
(eg. sphere, torus,...)

= D is equipped with a Riemannian metric g

— gp: inner product on the tangent space of
DatpeD

— g:p— gpis “smooth”
Lengths and angles of

tangent vectors u, v:

[ullp = 1/ 9p(u, u)

(6 2) = ful ol

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B A CLASS OF GENERALIZED RANDOM FIELDS PSLR

Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)

= Spectral theorem on compact Riemannian manifolds M = (D, g):
— £ has discrete eigenvalues {) : k € N} with smooth eigenfunctions {ej : k € N}

— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B A CLASS OF GENERALIZED RANDOM FIELDS PSLR

Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)

= Spectral theorem on compact Riemannian manifolds M = (D, g):
— £ has discrete eigenvalues {) : k € N} with smooth eigenfunctions {ej : k € N}

— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

= Consider the L?(M)-valued random variables defined by

2= (AW ex | where {Wy}gen ~ IIDN(0, 1)
keN

and 7 : R, — R such that |[y(\)| = Oy o0 (|A[77) with 8 > d/4
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B A CLASS OF GENERALIZED RANDOM FIELDS PSLR

Let £ be a second-order self-adjoint elliptic operator with smooth coefficients, eg.
L=-A, £L=r*)—div(H(-)V)

= Spectral theorem on compact Riemannian manifolds M = (D, g):
— £ has discrete eigenvalues {) : k € N} with smooth eigenfunctions {ej : k € N}

— The eigenfunctions {ex }ren can be taken to form an orthonormal basis of L?(M)

= Consider the L?(M)-valued random variables defined by

2= (AW ex | where {Wy}gen ~ IIDN(0, 1)
keN

and 7 : R, — R such that |[y(\)| = Oy o0 (|A[77) with 8 > d/4

= Covariance properties (Pereira, 2019): when (M, g) = ([0,1]%,¢) and £ = —A

Cov (Z(p),Z(p + dp)) = Cy ( gp(dp, (/p)) where (= .,7/7*1%,2}
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B ACCOUNTING FOR LOCAL ANISOTROPIES

® What about the local anisotropies?

— Treat local anisotropies as a field of local deformations of the spatial domain.

AN wﬁ?i.
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B ACCOUNTING FOR LOCAL ANISOTROPIES PSLR

= What about the local anisotropies?
— Treat local anisotropies as a field of local deformations of the spatial domain.
Rotation: —f Axis scalings: (i%)

A A
! ]
1

N—

Rotation: 0 Axis scalings: (p1, )

Define the metric g as

gp(u,v) = (D(p) " R(p)"u)" (D(p) ' R(p)"v)

where R(p) is the rotation matrix of angle 6(p) and D(p) = Diag (p1(p), ..., pa(P)).

, peD
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® FINITE ELEMENT APPROXIMATION

Mesh size h

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



® FINITE ELEMENT APPROXIMATION PSLR

Principle: Z =Y y(A\)Wiex =~ 2Zn =Y Zih € V.

keN i=1
Np - ‘\ > - * =
= Z Zﬂ%(p) - \ U= /Y
. i=1
Mesh size h 7 2,

— How? Galerkin approximation L, : V3, = span{t1,...,%¥n, } = Vi such that, for any ¢ € V},
Lng € Vi, satisfies| (L1o, f) = (Lo, f)| V€ Vi

) Np,
%= Z’y(/\kf)wkek; n = ZV Wkﬁ E Vi
k=1 -~
Eigendecomposition of the Eigendecomposntlon of the “Galerkin
Laplace-Beltrami operator Laplacian”
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m EXPLICIT COMPUTATION OF THE APPROXIMATION PSL¥
Z = Z’}/ )\k Wkek — Zh 27 h) Wke ZZwl eV,
k=1 k=1 i=1
Introduce:
Mass matrix Stiffness matrix
C = [k, V)] 1<pi<n, R = [(LYr, ¥0)) 1 <hi<n,

Gaussian random fields on Riemannian manifolds: Sampling and error analysis
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m EXPLICIT COMPUTATION OF THE APPROXIMATION FoLE
Z = ny )\k Wkek — Zh Z’}/ h) Wke ZZwZ eV,
k=1 k=1 i=1
Introduce:
Mass matrix Stiffness matrix
C = [k, V)] 1<pi<n, R = [(LYr, ¥0)) 1 <hi<n,
The weights Z = (Z1,...,Zn,) can be computed through the relation (Lang and Pereira, 2023)

Z=C72y(S)W|, with W ~ N(0, I)

where C'/2 is a symmetric matrix satisfying (01/2)2 =C and S = C~'/2RC~'/? with

AW +({™)
S=V vl = 4(8) =V v’
AR vyO8)
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B QUICK COMPARISON WITH THE SPDE APPROACH PSLx

We have a direct generalization!
SPDE approach (Lindgren et al., 2011)

Field
(k2= A2 =W
where o € N

Approximation
Nh,

Zp = Z Zip;
im1

Weights of the approximation
Z=C2(21+ 8) " Pw

Generalized random fields approach

Field
2 =7(L)W,
where |[Y(A\)| = OxL00 (A7) with 3 > d/4

Approximation
Nh

Zp = Z Zi;
i—1

Weights of the approximation
Z=C '*~(S)W

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



® RANDOM FIELDS ON RIEMANNIAN MANIFOLDS: RECAP PSL*

L2(M)

\

Spectral theorem: {(Ax,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

Z = Z (M)W e
keN

Vi, = span{¢y, ..., ¥y, } € L2*(M) FEM basis
\
" Spectral theorem”: {()\;Ch),el(ch)) tkell, Nh]]}
eigenvalues/functions of Ly,

\{
Vn,-valued random variables

N, N,
h h) (h
Zn =Y AW e =3z,
v i=1

independent k=1

Gaussian weights independent

Gaussian weights

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



® RANDOM FIELDS ON RIEMANNIAN MANIFOLDS: RECAP PSL*

L2(M)

\

Spectral theorem: {(Ax,ex) : k € N}
eigenvalues/functions of £

\

L?(M)-valued random variables

Z = Z (M)W e
keN

V, = span{iq,...,1¥n, } C L2(M) FEM basis
\
" Spectral theorem”: {(A;ch),el(ch)) ke [[l,Nh]]}
eigenvalues/functions of Ly,

\{
Vn,-valued random variables

N, N,
h h) (h
Zn =Y AW e =3z,
v i=1

independent k=1

Gaussian weights independent

Gaussian weights
V" Local definition of covariance:

Cov (Z(p),Z(p + dp)) =~ C) ( gp(dp, //p))
where Cp = .7 [

V" Local anisotropy modeling: where S = C~1/2RC1/2,

gp(u,v) = <D(’p)’]R(p)' u) 1‘ (D(p)"R(p)" v) C = [(¢i, Y], R = [(£¢s, ¥5)]
—» sparse matrices

v Explicit computation:
(Z=C' ()W, W ~N0.D)|

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



® RANDOM FIELDS ON RIEMANNIAN MANIFOLDS: RECAP

PSLx
L2(W) E Vi, = span{¢y, ..., ¥y, } € L2*(M) FEM basis
{ : \
Spectral theorem: {(Ax,ex) : k € N} i "Spectral theorem”: {(A;ch),el(ch)) 1k e [[l,Nh]]}
eigenvalues/functions of £ ' eigenvalues/functions of £y,
\ ' '
L?(M)-valued random variables . Vi, -valued random variables
1 N N,
Z= Z M)W ex - Zp = Z W()\Ech))wzgh)egch) = Z Zi;
keN independent FEM convergence _1 i=1
Gaussian weights resiﬂt Gallz]sd;::nv(::ingthts
V" Local definition of covariance: v . .
Explicit computation:
Cov (Z(p) ,Z(p+dp)) = C) ( gp(dp, /1[))) 7
where Cy = 7-1177] (Z=C' ()W, W ~N0.D)|
V" Local anisotropy modeling: where S = C~1/2RC1/2,
92(w.v) = (D(®) ' R(p)"u) (D) Rp)v) =1 wil, B = 1L5s, 4]
— sparse matrices
Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B FEM CONVERGENCE: SKETCH OF PROOF PSLR

® Let 1), : L2(M) — V}, orthogonal projection and define the action of the operator v(£) (and
by analogy v(£y)) as
L)f= Zv ) ([, ei)e

= Then,
2= () Wier = (L)W . Z'y aMw, = 7(Ln)Wp
keN 1
where W = > Wyey 1

where W, = Z W,Eh)e,(ch) = II,w
k=1

keN

® Goal: Bound the following so-called strong error by the mesh size h
12 = Zall 2@z o) = B2 = ZulP1Y2 = V(L)W = 7 (L1) (W) | 2 (L2 (20

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B FEM CONVERGENCE: SKETCH OF PROOF PSLR

® Start with the deterministic case : f € L2(M),

V(L) f =~ (Ln)(Tnf)

= Classical FEM results give estimates for the error ||u — wup|| between the solutions of problems
Lu=f and Luy=1;f

i.e. bounds for
€71 = £ @ )

— Find a way to use this estimate (or something close)

» v : C — R such that if Re(z) > 0, [7(2)] = Ojoo|—00(|A|7#) with 8 > d/4 and ~ is smooth

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B FEM CONVERGENCE: SKETCH OF PROOF PSL*
» |dea: Functional calcul and Cauchy theorem : If 7 is holomorphic around X € C,

AN = / 2(2)(z = N)Ndz

where T" is a closed curve containing A € C and in the region where «y is holomorphic

= We build a contour I" containing all the eigenvalues of £ so that we can write

01 =3 ( [ 2062070
-/ v<z>(i<z—Az->-1<f,ez->ei)dz g

i=1

o RCICERE
T
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B FEM CONVERGENCE: SKETCH OF PROOF

= Hence,

V(&) F = AEn) )]l = | / 7(2)(z — £)~ fdz / () (= — L) Ty fdz|
< / W 1z = £)7 1 — (2 — £4) " T fd

— Error ||u — uy|| between the solutions of the finite element problems
zu — Lu = f and zup, — Lup, =1, f
Computed using classical FEM estimate for ||£=1f — £, (I, f) |
= Deterministic error: for p € [0, 1], if ||LPf] < oo,

IV (Cn)nf = (L) I < Coanp(R)RZMEFPI | P £,
where Cy1p(h) is a logarithmic term

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B FEM CONVERGENCE: SKETCH OF PROOF PSLR

= Direct generalization to f = W is not possible since W ¢ L?(M)

m Case 8 < 1: We write

7 (Lr) T W=y (L)Wl L2 (0,22 (1))
< V(LYW = (LI W[ L2022 (vy) + [V (L)TLW = (L) W|| 2 (022 (n))
=8 =52
where S5 is bounded using the deterministic bound since I, W € L?(M), and

ST =11 v Q) Wiles = Thed) |22 ey = D v (Mi) e — e,
i€N i€N
is bounded using the FEM projection estimate (Bramble-—Hilbert lemma)

17 = T0) £ < REILY2 S]], for t € (0,2)

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



m FEM CONVERGENCE: SKETCH OF PROOF PSLR

= We proceed similarly for § > 1

= Final error estimate: (for 8 > d/4)

12 = 2l 220200 = [V (EYW = V(LW L2022 vy < Ca(R)RZ™ME= /A,

where C,,(h) is a logarithmic term

= When working on surfaces: FEM defined on a polyhedral approximation of the surface and not
on the real ideal surface

— Additional error term for geomertic consistency, but of the same order (or higher)

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



m CONFIRMING THE CONVERGENCE RATES

log(RMSE)|

250
T -
2 T
[ RRRET
E Frea
2 A,

750 e

-100-

o

a5
llog(h)I

/ somm=os

* Siope=16

+ Slope=2

Cases
B alpha=055, Theo, order = 0.5
@ aipha=1.05, Theo. order = 16
A alpha=1.5, Theo. order = 2

/ sipe=os
Slope = 1.5
Slope =2

Cases
W alpha=0.75, Theo. order = 0.5
@ aipha=125, Theo order = 1.5
A apha=225, Theo. order =2
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MINES PARIS

E OUTLINE PSL*

Il. Sampling and prediction
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B COMPUTING THE DISCRETIZED RANDOM FIELDS PSL¥
Ny
Finite element approximation of GRF: Z;, = Z Zih; where Z = (Zy,...,2Z,)T is obtained by
i=1

Z=C Y2y (S)W | with W ~N(0,I)

— How to compute v(S)W?

= Direct computation?

A1 (A1)
S=V V= y(SW =V viw
ANy, Y(Any,)

= Diagonalization + Storage : Expensive!!

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B COMPUTING THE DISCRETIZED RANDOM FIELDS PSL¥
Ny
Finite element approximation of GRF: Z;, = Z Zih; where Z = (Zy,...,2Z,)T is obtained by
i=1

Z=C Y2y (S)W | with W ~N(0,I)

— How to compute v(S)W?

= |dea: use the polynomial case
P(A1)
For P(X) = Zaka, PSw=V -

)VT'w = Zakskw

= P(S)w is computable iteratively: only involves matrix-vector multiplications!

CP()

Compute P(S)w where P is an approximation of ~ over an interval containing {A1,..., A}
= P(S)w~~(S)w since Vie{l,...,Np}, P(\)=~v(\)

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B GALERKIN-CHEBYSHEV APPROXIMATION PSL*

Np
Finite element approximation: Z; = Z Zi; where Z = (Zq,. .., Z,I)T is obtained by:

i=1

Z=C Y2y (S)W | with W ~N(0,I)

~

Galerkin—Chebyshev approximation: Z,, = Z Z—q/}i where Z = (21, ce Zl)is obtained by:
i=1

Z=C'?P,(S)W | with W ~ N(0, 1)

and P, is a Chebyshev polynomial approximation of ~

— No need to compute any matrix decomposition!
— Additional polynomial approximation error decreasing with the degree of P,

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B BACK TO KRIGING PREDICTION PSLR

Input Observations Y (x;) at some points (x1,...,2zxN,) of a spatial domain D
Y(,TZ) :Z(.%'i)+T<€i7 1€ {1,,/€}
= Z : Underlying (non-stationary) random field — Galerkin—Chebyshev approach

®eq,...,enp ~ N(0,1) iid noise

Output Kriging estimates Z*(p;) of Z some points (p1,...,pn;) of D

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



B BACK TO KRIGING PREDICTION PSLR

Input Observations Y (x;) at some points (x1,...,2zxN,) of a spatial domain D
Y(w,) :Z(.%'i)+TEi7 1€ {1,,/€}
= Z : Underlying (non-stationary) random field — Galerkin—Chebyshev approach

®eq,...,enp ~ N(0,1) iid noise

Output Kriging estimates Z*(p;) of Z some points (p1,...,pn;) of D

Model: Observations Y = (Y (x1),...,Y (xzn,))? are given by
Y =MpZ +re|, e~N(0,I)

where Z = (Z(s1),...,Z(s,))T contains the weights of the
Galerkin—Chebyshev approximation of Z and M, is a projection
matrix
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m BACK TO KRIGING PREDICTION PSL*

Input Observations Y (x;) at some points (x1,...,zy,) of a spatial domain D
V() = 2(x;) + 7184, i€{l,....k}
® 7 : Underlying (non-stationary) random field — Galerkin—-Chebyshev approach

" ey, ...,eny ~ N(0,1) iid noise

Output Kriging estimates Z*(p;) of Z at some points (p1, ..., PNy ) of D

Computation Solve the kriging system defined by
Z*(p;) | = MrEME(MpEM}, + 721)7'Y = My (7°Q + MypMp) "MBY

where ¥ is the covariance matrix of the Galerkin—Chebyshev weights, @ its precision matrix, and
M is a projection matrix
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m BACK TO KRIGING PREDICTION PSL*

Goal Solve the kriging system defined by
Z*(p;) | = MrEME(MpEM} + 721,)7'Y = Mp(7°Q + M, Mp) ' MAY
Challenges ® Defining the covariance matrices

= The big “N” problem
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m BACK TO KRIGING PREDICTION PSL*

Goal Solve the kriging system defined by

Z*(p;) | = MrEMEL(MpEMY, +7°1,)7'Y = Mp(7°Q + ML Mp) ' MLY

Challenges = Defining the covariance matrices v

= The big “N” problem

Explicit formula from the Galerkin—Chebyshev approach for the covariance matrix
= =C"'2p}(8)c/?

or for the precision matrix
Q= CY/2PY (S)C?
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m BACK TO KRIGING PREDICTION PSL*

Goal Solve the kriging system defined by

Z*(pj) | = MrSME(MpEME +7°1,)7'Y = Mr(r*Q + My Mp) ' MEY

Challenges = Defining the covariance matrices 4
= The big “N" problem 4

The linear system is solved using a matrix-free iterative algorithm (eg. Conjugate gradient): In the end,
only require products between (sparse) matrices and vectors
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T
m EXAMPLE ON SIMULATED DATA

PSL*

Vbt = =
PPN
PPN
Vs e =N

Simulation a non-stationary field, and
associated local anisotropies.

Field observations (regular sampling)
and kriging estimate.

Field observations (random sampling)
and kriging estimate.
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MINES PARIS

m EXAMPLE ON SIMULATED DATA PSLx

Left: 3D simulation of a GRF with varying anisotropies. Right: Kriging estimate using 10° randomly located samples
from the simulation on the left.
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MINES PARIS

PSL*

WELL CALIBRATION

B EXAMPLE ON REAL DATA DATA

Goal: Calibrate depth estimation from seismic data using well data by kriging the residuals.

Kriging estimate of residual points
between well and seismic data from

Local anisotropies computed from the

Depth map obtained from seismic
data. The continuous lines represent

level sets, and well locations.

the ODA field.

level sets, and the black dots represent

well locations.
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MINES PARIS

E OUTLINE PSL*

I11. Conclusion
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B CONCLUDING REMARKS

= Modeling complex spatial data using Riemannian
manifolds

— Riemannian metric for local anisotropy in the data

— Manifold for data lying on locally Euclidean
domains

= Finite element method for numerical purposes
— Explicit expression the covariance of the weights
— Convergence linked to the mesh size
— Sparse matrix algebra
= Change of paradigm
— Covariance parameters — SPDE parameters

— Possible physical interpretation of results (eg.
advection, diffusion)
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MINES PARIS

m OUTLOOKS pSL*

= Numerically efficient inference for spatio-temporal models
— Currently based on likelihood maximization

— Work on neural-network based approaches (Lenzi et al., 2023; Sainsbury-Dale et al., 2023;
Walchessen et al., 2023)

= (Stochastic) Analysis of spatio-temporal extension: Convergence results, Stabilization problems

= Applications: CO2 data on the globe, Temperature and deformation fields on nuclear waste
galleries

1=0.5 1=0.5 1=0.28
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B OUTLOOK: INFERENCE PSLx

Model Observations Y = (Y (x1),...,Y (zn,))T are given by
Y =MpZ+7e|, e~N(0,I)

where Z = (Z(s1),...,Z(s,))T is the vector containing the weights of the
Galerkin—Chebyshev approximation of Z and M is a projection matrix

Log-likelihood given by
£(0) =log|Qy(8)] — YTQy(0)Y + Constant,

where
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B OUTLOOK: INFERENCE PSL*

Model Observations Y = (Y (x1),...,Y (zn,))T are given by
Y =MpZ+7e|, e~N(0,I)

where Z = (Z(s1),...,Z(s,))T is the vector containing the weights of the
Galerkin—Chebyshev approximation of Z and M is a projection matrix

Log-likelihood given by
£(0) =10g|Qy (0)] — Y'Qy (0)Y + Constant,
where
Y'Qy(0)Y =777 (YTY ~Y"Mp(m*Q(6) + MgMD)‘lMgY>,

— Solved again by matrix-free approach
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m OUTLOOK: INFERENCE PSLx

Model Observations Y = (Y (x1),...,Y (zn,))T are given by
Y =MpZ+7e|, e~N(0,I)

where Z = (Z(s1),...,Z(s,))T is the vector containing the weights of the
Galerkin—Chebyshev approximation of Z and M is a projection matrix

Log-likelihood given by
£(0) =log |Qy(0)] — YTQy (0)Y + Constant,
where
10g |Qy (0)] = 10g |Q(0)| + (n — p) log 7° — log |7°Q(8) + M}, M|
— Hutchinson estimator (Hutchinson, 1989)

log |h(B)| = Trace(log h(B)) = E[W T log h(B)W], W ~ N(0,I)
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®m SOME SIMPLE TRANSPORT PHENOMENA

9 Advection 5 Diffusion gdvection + Diffusion
z z z

oI, I v o 92 Az = 7 Vs Ay —
at+v Vz=0 2 z=0 at—H) Vz—Az=0
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g

m ADVECTION-DIFFUSION SPDE ON RIEMANNIAN MANIFOLD PSLx

On a compact smooth Riemannian manifolds (M, g) of dimension 2, consider the SPDE (Pereira and

Lang, 2023)

0z 1
a + E((Ii2 — AM)QZ + leM(Z")/)) =

T

W
\/E T®ySa

where
= —Ajq is the Laplace—Beltrami operator and divy the divergence operator on (M, g)

" W ® Yg is a noise white in time, colored in space

® s € M — 7(s) is a smooth field of tangent vectors field
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ol
m ADVECTION-DIFFUSION SPDE ON RIEMANNIAN MANIFOLD PsLx

On a compact smooth Riemannian manifolds (M, g) of dimension 2, consider the SPDE (Pereira and

Lang, 2023)

0z 1
a + E((I{2 — Am)az + leM(Z’Y)) =

T

W
\/E T®ySa

where
= —Ajq is the Laplace—Beltrami operator and divy the divergence operator on (M, g)

" W ® Yg is a noise white in time, colored in space

® s € M — 7(s) is a smooth field of tangent vectors field

Examples of tangent vector fields
~v(s) = VE&(s) € TsM.
and if M is the 2-sphere :
(s) = VE(s) +7i(s) x Vx(s) € T,S?,
where £, x : M — R smooth functions, and 7i(s) outward normal at s € M

Gaussian random fields on Riemannian manifolds: Sampling and error analysis [ 45



m REFERENCES PSLR

Emery, X. and Porcu, E. (2019). Simulating isotropic vector-valued gaussian random fields on the
sphere through finite harmonics approximations. Stochastic Environmental Research and Risk
Assessment.

Furrer, R., Genton, M. G., and Nychka, D. (2006). Covariance tapering for interpolation of large
spatial datasets. Journal of Computational and Graphical Statistics, 15(3):502-523.

Gneiting, T. (2002). Compactly supported correlation functions. Journal of Multivariate Analysis,
83(2):493-508.

Higdon, D., Swall, J., and Kern, J. (1999). Non-stationary spatial modeling. Bayesian statistics,
6(1):761-768.

Hutchinson, M. F. (1989). A stochastic estimator of the trace of the influence matrix for Laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059-1076.

Lang, A. and Pereira, M. (2023). Galerkin—chebyshev approximation of gaussian random fields on
compact riemannian manifolds. BIT Numerical Mathematics, 63(4):51.

Gaussian random fields on Riemannian manifolds: Sampling and error analysis [ 46



m REFERENCES PSLR

Lang, A., Schwab, C., et al. (2015). Isotropic gaussian random fields on the sphere: regularity, fast
simulation and stochastic partial differential equations. The Annals of Applied Probability,
25(6):3047-3094.

Lantuéjoul, C., Freulon, X., and Renard, D. (2019). Spectral simulation of isotropic gaussian
random fields on a sphere. Mathematical Geosciences.

Lenzi, A., Bessac, J., Rudi, J., and Stein, M. L. (2023). Neural networks for parameter estimation in
intractable models. Computational Statistics & Data Analysis, 185:107762.

Lindgren, F., Rue, H., and Lindstrom, J. (2011). An explicit link between gaussian fields 670 and
gaussian markov random fields: the spde approach (with discussion). JR 671 Stat Soc, Series B,
73:423-498.

Lindgren, G. (2012). Stationary stochastic processes: theory and applications. Chapman and
Hall/CRC.

Marinucci, D. and Peccati, G. (2011). Random fields on the sphere: representation, limit theorems
and cosmological applications, volume 389. Cambridge University Press.

Gaussian random fields on Riemannian manifolds: Sampling and error analysis



m REFERENCES PSLR

Pereira, M. (2019). Generalized random fields on Riemannian manifolds: theory and practice. PhD
thesis, Université Paris sciences et lettres.

Rozanov, J. A. (1977). Markov random fields and stochastic partial differential equations.
Mathematics of the USSR-Sbornik, 32(4):515.

Rue, H. and Held, L. (2005). Gaussian Markov random fields: theory and applications. Chapman
and Hall/CRC.

Sainsbury-Dale, M., Richards, J., Zammit-Mangion, A., and Huser, R. (2023). Neural bayes
estimators for irregular spatial data using graph neural networks. arXiv preprint arXiv:2310.02600.

Sampson, P. D. and Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial
covariance structure. Journal of the American Statistical Association, 87(417):108-119.

Walchessen, J., Lenzi, A., and Kuusela, M. (2023). Neural likelihood surfaces for spatial processes
with computationally intensive or intractable likelihoods. arXiv preprint arXiv:2305.04634.

Whittle, P. (1954). On stationary processes in the plane. Biometrika, pages 434—-449.

Gaussian random fields on Riemannian manifolds: Sampling and error analysis [ 48



	Introduction and context
	Random fields on Riemannian manifolds
	Sampling and prediction
	Conclusion
	References
	Appendix
	Appendix
	References


