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■ GEOSTATISTICAL MODELING

Geostatistical paradigm: over the spatial domain D

Gaussian Random Field

Z : {Z(p) : p ∈ D}
High correlation

Realization−→

Observed variable

z : {z(p) : p ∈ D}
High “similarity”

Allows to model data which are not independent, identically distributed

Covariance function CZ :

CZ : D×D → R

(p1,p2) 7→ CZ(p1,p2) = Cov(Z(p1), Z(p2))

→ used to model the spatial structure observed on the variable/data
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■ CLASSICAL APPLICATIONS OF GEOSTATISTICS

Simulation
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All these tasks usually require to build a covariance matrix Σ: [Σ]ij = CZ(pi,pj)

⇒ The covariance function CZ must be known
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All these tasks usually require to build a covariance matrix Σ: [Σ]ij = CZ(pi,pj)

⇒ The covariance function CZ must be known
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■ EXAMPLE: (SIMPLE) KRIGING PREDICTION

Input Observations Y (xi) at some points (x1, . . . , xND
) of a spatial domain D

Y (xi) = Z(xi) + τεi, i ∈ {1, . . . , k}
Z : Underlying (non-stationary) random field

ε1, . . . , εND
∼ N(0, 1) iid noise

Output Kriging estimates Z∗(pj) of Z some points (p1, . . . , pNT
) of D

Computation Solve the kriging system defined by


...

Z∗(pj)
...

 = ΣTD

(
ΣDD + τ2I

)−1


...

Y (xi)
...


ΣTD =

[
Cov(Z(pk),Z(xl))

]
1≤k≤NT
1≤l≤ND

∈ RNT×ND , ΣDD =
[
Cov(Z(xk),Z(xl))

]
1≤k≤ND
1≤l≤ND

∈ RND×ND
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■ CHALLENGES IN PRACTICE

Non-euclidean domains

Extensive literature for the sphere: Marinucci and Peccati (2011);

Lang et al. (2015); Lantuéjoul et al. (2019); Emery and Porcu (2019)

Non-stationarity

Examples of proposed methods: Karhunen-Loève expansions
(Lindgren, 2012), Space deformation models (Sampson and Guttorp,

1992), Convolution models (Higdon et al., 1999)

Big “N” problem

Need to restrict the choice of models to work with sparse
matrices: Compactly-supported or tapered covariance functions
(Gneiting, 2002; Furrer et al., 2006), Markovian models (Rue and Held,

2005)
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■ THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise

P (−∆)1/2Z := F−1
[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+
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Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise

P (−∆)1/2Z := F−1
[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

→ In particular, if P (x) = (κ2 + x)α, i.e. if we consider the SPDE

(κ2 −∆)α/2Z = W

then Z has a Matérn covariance function

Cov
(
Z(x+ h),Z(x)

)
= C(∥h∥) = σ2

2ν−1Γ(ν)

(
κ∥h∥

)ν
Kν

(
κ∥h∥

)
, ν = α− d/2
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■ MATÉRN RANDOM FIELDS

Simulations of Gaussian random fields with a Matérn covariance
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■ A FIRST SOLUTION: THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise

P (−∆)1/2Z := F−1
[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed
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Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise

P (−∆)1/2Z := F−1
[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Non-euclidean domains,
Non-stationarity

Define the SPDE on manifolds or use varying
parameters
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■ A FIRST SOLUTION: THE SPDE APPROACH

Basic idea: if Z is an isotropic Markovian field over Rd, then it is equivalently characterized by
(Whittle, 1954; Rozanov, 1977):

Spectral density

Γ : ξ ∈ Rd 7→ 1

P (∥ξ∥2)

Stochastic partial differential equation (SPDE)

P (−∆)1/2Z = W

W: Gaussian white noise

P (−∆)1/2Z := F−1
[
ξ 7→ P (∥ξ∥2)1/2 × F [Z](ξ)

]
where P is a polynomial, strictly positive over R+

SPDE approach: Lindgren et al. (2011) use this last characterization of isotropic Markovian fields

Problem Solution proposed

Big “N” problem Use the finite element method to solve the SPDE
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■ FINITE ELEMENT APPROXIMATION

P (−∆)1/2Z = W

D

Z(p) ≈
n∑

j=1

Zjψj(p)

True solution (left) and its finite element approximation
(right)

The weights Z = (Z1, . . . , Zn) form a Gaussian vector with precision matrix

QZ = C1/2P (S)C1/2 S = C−1/2RC−1/2

C = [⟨ψi, ψj⟩] = “Mass” matrix → Sparse
(and Diagonal after approx)

R = [⟨∇ψi,∇ψj⟩] = “Stiffness” matrix → Sparse

QZ is sparse
(when degP is relatively small)
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■ APPLICATION: NON-MARKOVIAN SPECTRAL DENSITIES

(κ2 −∆)α/2Z = W

Sample
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Variagram comparison with Matérn covariance
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■ APPLICATION: RANDOM FIELDS ON SMOOTH MANIFOLDS

(κ2 −∆)α/2Z = W

Simulations of Matérn fields on smooth two-dimensional surfaces

Simulation of a Matérn field on a “full” torus (left) and some selected slices (right)
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■ APPLICATION: NON-STATIONARY RANDOM FIELDS

(κ2(s)− div(H(s)∇))α/2Z = W

Example of anisotropy parameters (left) and corresponding random field simulation obtained using our method
(right), on the unit square.
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■ OUTLINE

I. Random fields on Riemannian manifolds

II. Sampling and prediction

III. Conclusion
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■ DEFINITION: RIEMANNIAN MANIFOLDS

Let m ≥ 1 and 1 ≤ d ≤ m

M := (D, g) is a compact Riemannian (sub)manifold of dimension d

D ⊂ Rm is a smooth (sub)manifold

− Locally Euclidean of dimension d

− Can be entirely mapped by a set of
smoothly compatible charts

Ex: Euclidean domains, smooth surfaces
(eg. sphere, torus,...)

D is equipped with a Riemannian metric g

− gp: inner product on the tangent space of
D at p ∈ D

− g : p 7→ gp is “smooth”

Lengths and angles of
tangent vectors u,v:

∥u∥p =
√
gp(u,u)

cos
(
θ(u,v)

)
=

gp(u,v)

∥u∥p∥v∥p

Gaussian random fields on Riemannian manifolds: Sampling and error analysis 14



■ A CLASS OF GENERALIZED RANDOM FIELDS

Let L be a second-order self-adjoint elliptic operator with smooth coefficients, eg.

L = −∆, L = κ2(·)− div(H(·)∇)

Spectral theorem on compact Riemannian manifolds M = (D, g):
− L has discrete eigenvalues {λk : k ∈ N} with smooth eigenfunctions {ek : k ∈ N}
− The eigenfunctions {ek}k∈N can be taken to form an orthonormal basis of L2(M)

Consider the L2(M)-valued random variables defined by

Z =
∑
k∈N

γ(λk)Wk ek where {Wk}k∈N ∼ IIDN(0, 1)

and γ : R+ → R such that |γ(λ)| = Oλ→∞(|λ|−β) with β > d/4

Covariance properties (Pereira, 2019): when (M, g) = ([0, 1]d, g) and L = −∆

Cov (Z(p) ,Z(p+ dp)) ≈ C0

(√
gp(dp, dp)

)
where C0 = F−1[γ2]

Gaussian random fields on Riemannian manifolds: Sampling and error analysis 15
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■ ACCOUNTING FOR LOCAL ANISOTROPIES

What about the local anisotropies?

→ Treat local anisotropies as a field of local deformations of the spatial domain.
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■ ACCOUNTING FOR LOCAL ANISOTROPIES

What about the local anisotropies?

→ Treat local anisotropies as a field of local deformations of the spatial domain.

Define the metric g as

gp(u,v) =
(
D(p)−1R(p)Tu

)T (
D(p)−1R(p)Tv

)
, p ∈ D

where R(p) is the rotation matrix of angle θ(p) and D(p) = Diag (ρ1(p), . . . , ρd(p)).
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■ FINITE ELEMENT APPROXIMATION

Principle: Z =
∑
k∈N

γ(λk)Wk ek ≈ Zh =

Nh∑
i=1

Ziψi ∈ Vh.

Mesh size h

Zh(p) =

Nh∑
i=1

Ziψi(p)
≈

Z Zn

→ How? Galerkin approximation Lh : Vh = span{ψ1, . . . , ψNh
} → Vh such that, for any ϕ ∈ Vh

Lhϕ ∈ Vh satisfies ⟨Lhϕ, f⟩ = ⟨Lϕ, f⟩ ∀f ∈ Vh

Z =

∞∑
k=1

γ(λk)Wkek

Eigendecomposition of the
Laplace-Beltrami operator

≈
Zn =

Nh∑
k=1

γ(λ
(h)
k )Wke

(h)
k ∈ Vh

Eigendecomposition of the “Galerkin
Laplacian”
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■ EXPLICIT COMPUTATION OF THE APPROXIMATION

The weights Z = (Z1, . . . , ZNh
) can be computed through the relation (Lang and Pereira, 2023)

Z = C−1/2γ(S)W , with W ∼ N(0, I)

where C1/2 is a symmetric matrix satisfying
(
C1/2

)2
= C and S = C−1/2RC−1/2 with

S = V

 λ
(h)
1

. . .

λ
(h)
Nh

V T ⇒ γ(S) := V

 γ(λ
(h)
1 )

. . .

γ(λ
(h)
Nh

)

V T

Gaussian random fields on Riemannian manifolds: Sampling and error analysis 18
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i=1

Ziψi ∈ Vh

Introduce:
Mass matrix

C = [⟨ψk, ψl⟩]1≤k,l≤Nh

Stiffness matrix

R = [⟨Lψk, ψl⟩]1≤k,l≤Nh
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■ QUICK COMPARISON WITH THE SPDE APPROACH

We have a direct generalization!

SPDE approach (Lindgren et al., 2011)

Field

(κ2 −∆)α/2Z = W

where α ∈ N

Approximation

Zh =

Nh∑
i=1

Ziψi

Weights of the approximation

Z = C−1/2
(
κ2I + S

)−α/2
W

Generalized random fields approach

Field

Z = γ(L)W,

where |γ(λ)| = Oλ→∞(|λ|−β) with β > d/4

Approximation

Zh =

Nh∑
i=1

Ziψi

Weights of the approximation

Z = C−1/2γ(S)W
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■ RANDOM FIELDS ON RIEMANNIAN MANIFOLDS: RECAP

L2(M)

Spectral theorem: {(λk, ek) : k ∈ N}
eigenvalues/functions of L

L2(M)-valued random variables

Z =
∑
k∈N

γ(λk)Wk︸ ︷︷ ︸
independent

Gaussian weights

ek

✓ Local definition of covariance:

Cov (Z(p) ,Z(p+ dp)) ≈ C0

(√
gp(dp, dp)

)
where C0 = F−1[γ2]

✓ Local anisotropy modeling:

gp(u,v) =
(
D(p)−1R(p)Tu

)T (
D(p)−1R(p)Tv

)

VNh
= span {ψ1, . . . , ψNh

} ⊂ L2(M) FEM basis

”Spectral theorem”:
{
(λ

(h)
k , e

(h)
k ) : k ∈ [[1, Nh]]

}
eigenvalues/functions of Lh

VNh
-valued random variables

Zh =

Nh∑
k=1

γ(λ
(h)
k )W

(h)
k︸ ︷︷ ︸

independent
Gaussian weights

e
(h)
k =

Nh∑
i=1

Ziψi

✓ Explicit computation:

Z = C−1/2γ(S)W , W ∼ N(0, I)

where S = C−1/2RC−1/2,
C = [⟨ψi, ψj⟩] ,R = [⟨Lψi, ψj⟩]

→ sparse matrices

FEM convergence
result
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Spectral theorem: {(λk, ek) : k ∈ N}
eigenvalues/functions of L

L2(M)-valued random variables

Z =
∑
k∈N

γ(λk)Wk︸ ︷︷ ︸
independent

Gaussian weights

ek

✓ Local definition of covariance:

Cov (Z(p) ,Z(p+ dp)) ≈ C0

(√
gp(dp, dp)

)
where C0 = F−1[γ2]

✓ Local anisotropy modeling:

gp(u,v) =
(
D(p)−1R(p)Tu

)T (
D(p)−1R(p)Tv

)

VNh
= span {ψ1, . . . , ψNh

} ⊂ L2(M) FEM basis

”Spectral theorem”:
{
(λ

(h)
k , e

(h)
k ) : k ∈ [[1, Nh]]

}
eigenvalues/functions of Lh

VNh
-valued random variables

Zh =

Nh∑
k=1

γ(λ
(h)
k )W

(h)
k︸ ︷︷ ︸

independent
Gaussian weights

e
(h)
k =

Nh∑
i=1

Ziψi

✓ Explicit computation:

Z = C−1/2γ(S)W , W ∼ N(0, I)

where S = C−1/2RC−1/2,
C = [⟨ψi, ψj⟩] ,R = [⟨Lψi, ψj⟩]

→ sparse matrices

FEM convergence
result
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■ FEM CONVERGENCE: SKETCH OF PROOF

Let Πh : L2(M) → Vh orthogonal projection and define the action of the operator γ(L) (and
by analogy γ(Lh)) as

γ(L)f =
∑
i

γ(λi)⟨f, ei⟩ei

Then,

Z =
∑
k∈N

γ(λk)Wkek = γ(L)W

where W =
∑
k∈N

Wkek

Zh =

Nh∑
k=1

γ(λ
(h)
k )W

(h)
k e

(h)
k = γ(Lh)Wh

where Wh =
Nh∑
k=1

W
(h)
k e

(h)
k = ΠhW

Goal: Bound the following so-called strong error by the mesh size h

∥Z− Zh∥L2(Ω;L2(M)) = E[∥Z− Zh∥2]1/2 = ∥γ(L)W− γ(Lh)(ΠhW)∥L2(Ω;L2(M))
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■ FEM CONVERGENCE: SKETCH OF PROOF

Start with the deterministic case : f ∈ L2(M),

∥γ(L)f − γ(Lh)(Πhf)∥

Classical FEM results give estimates for the error ∥u− uh∥ between the solutions of problems

Lu = f and Luh = Πhf

i.e. bounds for
∥L−1f − L−1

h (Πhf)∥

→ Find a way to use this estimate (or something close)

γ : C → R such that if Re(z) ≥ 0, |γ(z)| = O|∞|→∞(|λ|−β) with β > d/4 and γ is smooth
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■ FEM CONVERGENCE: SKETCH OF PROOF

Idea: Functional calcul and Cauchy theorem : If γ is holomorphic around λ ∈ C,

γ(λ) =

∫
Γ

γ(z)(z − λ)−1dz

where Γ is a closed curve containing λ ∈ C and in the region where γ is holomorphic

We build a contour Γ containing all the eigenvalues of L so that we can write

γ(L)f =

∞∑
i=1

(∫
Γ

γ(z)(z − λi)
−1dz

)
⟨f, ei⟩ei

=

∫
Γ

γ(z)

( ∞∑
i=1

(z − λi)
−1⟨f, ei⟩ei

)
dz

=

∫
Γ

γ(z)(z − L)−1fdz
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■ FEM CONVERGENCE: SKETCH OF PROOF

Hence,

∥γ(L)f − γ(Lh)(Πhf)∥ = ∥
∫
Γ

γ(z)(z − L)−1fdz −
∫
Γ

γ(z)(z − Lh)
−1Πhfdz∥

≤
∫
Γ

|γ(z)| ∥(z − L)−1f − (z − Lh)
−1Πhf∥dz

→ Error ∥u− uh∥ between the solutions of the finite element problems

zu− Lu = f and zuh − Luh = Πhf

Computed using classical FEM estimate for ∥L−1f − L−1
h (Πhf)∥

Deterministic error: for p ∈ [0, 1], if ∥Lpf∥ <∞,

∥γ(Lh)Πhf − γ(L)f∥ ≤ Cα+p(h)h
2min{β+p;1}∥Lpf∥,

where Cα+p(h) is a logarithmic term
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■ FEM CONVERGENCE: SKETCH OF PROOF

Direct generalization to f = W is not possible since W /∈ L2(M)

Case β < 1: We write

∥γ(Lh)ΠhW−γ(L)W∥L2(Ω;L2(M))

≤ ∥γ(L)W− γ(L)ΠhW∥L2(Ω;L2(M))︸ ︷︷ ︸
:=S1

+ ∥γ(L)ΠhW− γ(Lh)ΠhW∥L2(Ω;L2(M))︸ ︷︷ ︸
:=S2

where S2 is bounded using the deterministic bound since ΠhW ∈ L2(M), and

S2
1 = ∥

∑
i∈N

γ(λi)Wi(ei −Πhei)∥2L2(Ω;L2(M)) =
∑
i∈N

γ(λi)
2∥ei −Πhei∥2,

is bounded using the FEM projection estimate (Bramble-–Hilbert lemma)

∥(I −Πh)f∥ ≲ ht∥Lt/2f∥, for t ∈ (0, 2)

Gaussian random fields on Riemannian manifolds: Sampling and error analysis 25



■ FEM CONVERGENCE: SKETCH OF PROOF

We proceed similarly for β ≥ 1

Final error estimate: (for β > d/4)

∥Z− Zh∥L2(Ω;L2(M)) = ∥γ(L)W− γ(Lh)ΠhW∥L2(Ω;L2(M)) ≤ Cα(h)h
2min{β−d/4;1},

where Cα(h) is a logarithmic term

When working on surfaces: FEM defined on a polyhedral approximation of the surface and not
on the real ideal surface

→ Additional error term for geomertic consistency, but of the same order (or higher)
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■ CONFIRMING THE CONVERGENCE RATES
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■ OUTLINE

I. Random fields on Riemannian manifolds

II. Sampling and prediction

III. Conclusion
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■ COMPUTING THE DISCRETIZED RANDOM FIELDS

Finite element approximation of GRF: Zh =

Nh∑
i=1

Ziψi where Z = (Z1, . . . , Zn)
T is obtained by

Z = C−1/2γ(S)W with W ∼ N(0, I)

→ How to compute γ(S)W ?

Direct computation?

S = V

(
λ1

. . .
λNh

)
V T ⇒ γ(S)W = V

(
γ(λ1)

. . .
γ(λNh

)

)
V TW

⇒ Diagonalization + Storage : Expensive!!
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■ COMPUTING THE DISCRETIZED RANDOM FIELDS

Finite element approximation of GRF: Zh =

Nh∑
i=1

Ziψi where Z = (Z1, . . . , Zn)
T is obtained by

Z = C−1/2γ(S)W with W ∼ N(0, I)

→ How to compute γ(S)W ?

Idea: use the polynomial case

For P (X) =
∑

akX
k, P (S)w = V

(
P (λ1)

. . .
P (λn)

)
V Tw =

∑
akS

kw

⇒ P (S)w is computable iteratively: only involves matrix-vector multiplications!

Compute P (S)w where P is an approximation of γ over an interval containing {λ1, . . . , λn}
⇒ P (S)w ≈ γ(S)w since ∀i ∈ {1, . . . , Nh}, P (λi) ≈ γ(λi)
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■ GALERKIN–CHEBYSHEV APPROXIMATION

Finite element approximation: Zh =

Nh∑
i=1

Ziψi where Z = (Z1, . . . , Zn)
T is obtained by:

Z = C−1/2γ(S)W with W ∼ N(0, I)

Galerkin–Chebyshev approximation: Ẑn =

n∑
i=1

Ẑiψi where Ẑ = (Ẑ1, . . . , Ẑn)is obtained by:

Ẑ = C−1/2Pγ(S)W with W ∼ N(0, I)

and Pγ is a Chebyshev polynomial approximation of γ

→ No need to compute any matrix decomposition!
→ Additional polynomial approximation error decreasing with the degree of Pγ
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■ BACK TO KRIGING PREDICTION

Input Observations Y (xi) at some points (x1, . . . , xND
) of a spatial domain D

Y (xi) = Z(xi) + τεi, i ∈ {1, . . . , k}
Z : Underlying (non-stationary) random field → Galerkin–Chebyshev approach

ε1, . . . , εND
∼ N(0, 1) iid noise

Output Kriging estimates Z∗(pj) of Z some points (p1, . . . , pNT
) of D

Model: Observations Y = (Y (x1), . . . , Y (xND
))T are given by

Y = MDZ + τϵ , ϵ ∼ N(0, I)

where Z = (Z(s1), . . . , Z(sn))
T contains the weights of the

Galerkin–Chebyshev approximation of Z and MD is a projection
matrix
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■ BACK TO KRIGING PREDICTION

Input Observations Y (xi) at some points (x1, . . . , xND
) of a spatial domain D

Y (xi) = Z(xi) + τεi, i ∈ {1, . . . , k}
Z : Underlying (non-stationary) random field → Galerkin–Chebyshev approach

ε1, . . . , εND
∼ N(0, 1) iid noise

Output Kriging estimates Z∗(pj) of Z at some points (p1, . . . , pNT
) of D

Computation Solve the kriging system defined by
...

Z∗(pj)
...

 = MTΣMT
D(MDΣMT

D + τ2Ip)
−1Y = MT (τ

2Q+MT
DMD)−1MT

DY

where Σ is the covariance matrix of the Galerkin–Chebyshev weights, Q its precision matrix, and
MT is a projection matrix
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■ BACK TO KRIGING PREDICTION

Goal Solve the kriging system defined by


...

Z∗(pj)
...

 = MTΣMT
D(MDΣMT

D + τ2Ip)
−1Y = MT (τ

2Q+MT
DMD)−1MT

DY

Challenges Defining the covariance matrices

The big “N” problem
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■ BACK TO KRIGING PREDICTION

Goal Solve the kriging system defined by
...

Z∗(pj)
...

 = MTΣMT
D(MDΣMT

D + τ2Ip)
−1Y = MT (τ

2Q+MT
DMD)−1MT

DY

Challenges Defining the covariance matrices

The big “N” problem

Explicit formula from the Galerkin–Chebyshev approach for the covariance matrix

Σ = C−1/2P 2
γ (S)C

−1/2

or for the precision matrix
Q = C1/2P 2

1/γ(S)C
1/2
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■ BACK TO KRIGING PREDICTION

Goal Solve the kriging system defined by


...

Z∗(pj)
...

 = MTΣMT
D(MDΣMT

D + τ2Ip)
−1Y = MT (τ

2Q+MT
DMD)−1MT

DY

Challenges Defining the covariance matrices

The big “N” problem

The linear system is solved using a matrix-free iterative algorithm (eg. Conjugate gradient): In the end,
only require products between (sparse) matrices and vectors
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■ EXAMPLE ON SIMULATED DATA

Simulation a non-stationary field, and
associated local anisotropies.

Field observations (regular sampling)
and kriging estimate.

Field observations (random sampling)
and kriging estimate.
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■ EXAMPLE ON SIMULATED DATA

Left: 3D simulation of a GRF with varying anisotropies. Right: Kriging estimate using 105 randomly located samples
from the simulation on the left.

Gaussian random fields on Riemannian manifolds: Sampling and error analysis 37



■ EXAMPLE ON REAL DATA DATA: WELL CALIBRATION

Goal: Calibrate depth estimation from seismic data using well data by kriging the residuals.

Depth map obtained from seismic
data. The continuous lines represent
level sets, and the black dots represent

well locations.

Local anisotropies computed from the
level sets, and well locations.

Kriging estimate of residual points
between well and seismic data from

the ODA field.
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■ OUTLINE

I. Random fields on Riemannian manifolds

II. Sampling and prediction

III. Conclusion
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■ CONCLUDING REMARKS

Modeling complex spatial data using Riemannian
manifolds

− Riemannian metric for local anisotropy in the data

− Manifold for data lying on locally Euclidean
domains

Finite element method for numerical purposes

− Explicit expression the covariance of the weights

− Convergence linked to the mesh size

− Sparse matrix algebra

Change of paradigm

− Covariance parameters → SPDE parameters

− Possible physical interpretation of results (eg.
advection, diffusion)
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■ OUTLOOKS

Numerically efficient inference for spatio-temporal models
− Currently based on likelihood maximization

− Work on neural-network based approaches (Lenzi et al., 2023; Sainsbury-Dale et al., 2023;

Walchessen et al., 2023)

(Stochastic) Analysis of spatio-temporal extension: Convergence results, Stabilization problems

Applications: CO2 data on the globe, Temperature and deformation fields on nuclear waste
galleries
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■ OUTLOOK: INFERENCE

Model Observations Y = (Y (x1), . . . , Y (xND
))T are given by

Y = MDZ + τϵ , ϵ ∼ N(0, I)

where Z = (Z(s1), . . . , Z(sn))
T is the vector containing the weights of the

Galerkin–Chebyshev approximation of Z and MD is a projection matrix

Log-likelihood given by

L(θ) = log |QY (θ)| − Y TQY (θ)Y + Constant,

where
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■ OUTLOOK: INFERENCE

Model Observations Y = (Y (x1), . . . , Y (xND
))T are given by

Y = MDZ + τϵ , ϵ ∼ N(0, I)

where Z = (Z(s1), . . . , Z(sn))
T is the vector containing the weights of the

Galerkin–Chebyshev approximation of Z and MD is a projection matrix

Log-likelihood given by

L(θ) = log |QY (θ)| − Y TQY (θ)Y + Constant,

where

Y TQY (θ)Y = τ−2

(
Y TY − Y TMD

(
τ2Q(θ) +MT

DMD

)−1
MT

DY

)
,

→ Solved again by matrix-free approach
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■ OUTLOOK: INFERENCE

Model Observations Y = (Y (x1), . . . , Y (xND
))T are given by

Y = MDZ + τϵ , ϵ ∼ N(0, I)

where Z = (Z(s1), . . . , Z(sn))
T is the vector containing the weights of the

Galerkin–Chebyshev approximation of Z and MD is a projection matrix

Log-likelihood given by

L(θ) = log |QY (θ)| − Y TQY (θ)Y + Constant,

where

log |QY (θ)| = log |Q(θ)|+ (n− p) log τ2 − log |τ2Q(θ) +MT
DMD|

→ Hutchinson estimator (Hutchinson, 1989)

log |h(B)| = Trace(log h(B)) = E[W T log h(B)W ], W ∼ N(0, I)
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■ SOME SIMPLE TRANSPORT PHENOMENA

Advection
∂z

∂t
+ v⃗ · ∇z = 0

Diffusion
∂z

∂t
−∆z = 0

Advection + Diffusion
∂z

∂t
+ v⃗ · ∇z −∆z = 0
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■ ADVECTION-DIFFUSION SPDE ON RIEMANNIAN MANIFOLD

On a compact smooth Riemannian manifolds (M, g) of dimension 2, consider the SPDE (Pereira and

Lang, 2023)
∂Z

∂t
+

1

c

(
(κ2 −∆M)αZ+ divM(Zγ)

)
=

τ√
c
WT ⊗ YS ,

where
−∆M is the Laplace–Beltrami operator and divM the divergence operator on (M, g)

WT ⊗ YS is a noise white in time, colored in space

s ∈ M 7→ γ(s) is a smooth field of tangent vectors field

Examples of tangent vector fields γ

γ(s) = ∇ξ(s) ∈ TsM.

and if M is the 2-sphere :

γ(s) = ∇ξ(s) + n⃗(s)×∇χ(s) ∈ TsS2,
where ξ, χ : M → R smooth functions, and n⃗(s) outward normal at s ∈ M
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