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Introduction Introduction

From static to online

(Static) convex optimization is a fundamental tool in many engineering
applications:

I e.g. machine learning, power systems, transportation networks,
signal/image processing, ...

However, recent technological advances in these applications have
introduced new challenges:

I we deal with large-scale, interconnected, rapidly evolving systems

for which traditional optimization techniques are not sufficient:

I there is a need to revisit and redesign them
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Introduction Introduction

Example: Power grids
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E. Dall’Anese and A. Simonetto. “Optimal Power Flow Pursuit”. In: IEEE Transactions on Smart Grid 9.2 (Mar. 2018),
pp. 942–952.

A. Lesage-Landry and D. S. Callaway. “Dynamic and Distributed Online Convex Optimization for Demand Response of
Commercial Buildings”. In: IEEE Control Systems Letters 4.3 (July 2020), pp. 632–637.
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Introduction Introduction

Example: Online learning
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S. Shalev-Shwartz. “Online Learning and Online Convex Optimization”. In: Foundations and Trends R© in Machine Learning
4.2 (2011), pp. 107–194.

R. Dixit et al. “Online Learning with Inexact Proximal Online Gradient Descent Algorithms”. In: IEEE Transactions on
Signal Processing 67.5 (2019), pp. 1338 –1352.
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Introduction Introduction

Design constraints

Static optimization

• static data, collected once

• large time for computation
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I We need algorithms that can handle dynamic problems at the relevant
time-scales
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Introduction Introduction

Unstructured v. structured

We can classify online algorithms in:

• Unstructured:
I we tweak static algorithms for the online set-up
I they are “model-agnostic”

• Structured:
I we design tailored algorithms
I they are “model-based”

I I will talk about using control theory to design structured algorithms

A. Simonetto et al. “Time-Varying Convex Optimization: Time-Structured Algorithms and Applications”. In: Proceedings
of the IEEE 108.11 (Nov. 2020), pp. 2032–2048.
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Introduction Problem formulation

Problem formulation

Formally, we are interested in solving the sequence of problems

x∗k = arg min
x∈Rn

fk(x), k ∈ N

where a new problem is revealed every Ts seconds

Assumptions

• {fk}k∈N are
¯
λ-strongly convex and λ̄-smooth

• bounded rate of change: ∃Γ1 ≥ 0 such that

‖∇fk+1(x)−∇fk(x)‖ ≤ Γ1, ∀k ∈ N, x ∈ Rn

I 1) unique solution trajectory {x∗k}k∈N; 2) bounded
∥∥x∗k − x∗k−1

∥∥
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Introduction Problem formulation

Solving online optimization

What do we mean by “solving an online problem”?

I Track the optimal trajectory – within some precision and in real time

Formally, we design an algorithm Ak : Rn → Rn

xk+1 = Ak(xk)

so that:
lim sup
k→∞

‖xk − x∗k‖ ≤ B <∞.

In the following:

• we want our algorithm to be predictive: xk+1 will be computed
during [kTs, (k + 1)Ts) using fk – not fk+1
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Introduction Online gradient

Unstructured: online gradient

A first approach is the online gradient:

xk+1 = Ak(xk) := xk − α∇fk(xk), k ∈ N

with α < 2/λ̄

Its tracking error is bounded by

lim sup
k→∞

‖xk − x∗k‖ ≤ B :=
1

1− ζ
Γ1Ts

¯
λ

where ζ := max{|1− α
¯
λ|, |1− αλ̄|} ∈ (0, 1)

E. Dall’Anese et al. “Optimization and Learning With Information Streams: Time-varying algorithms and applications”. In:
IEEE Signal Processing Magazine 37.3 (May 2020), pp. 71–83.
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Introduction Online gradient

Unstructured: online gradient (cont’d)

As the online gradient highlights:

• tracking in general is not exact: we can only reach a neighborhood of
the optimal trajectory

x∗k

x∗k+1

x∗k+2

x∗k+3 x∗k+4

possible
trajectories
{xk}

The question now is
I Can we design algorithms with smaller (or zero) tracking error?
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Control-based online optimization Control and optimization

Control and optimization

Control and optimization come together in two different scenarios:

• optimization as a tool: we design the control input by solving an
optimization problem1

I e.g. MPC: we choose the control input by solving an optimization
problem that changes as the state of the system changes

• control-based design: we use control theory to design optimization
algorithms2 ⇐ this is what we do

We change our perspective:

I the online optimization problem is the “plant”

1A. Hauswirth et al. “Timescale Separation in Autonomous Optimization”. In: IEEE Transactions on Automatic Control 66.2
(2021), pp. 611–624.

2L. Lessard, B. Recht, and A. Packard. “Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints”.
In: SIAM Journal on Optimization 26.1 (Jan. 2016), pp. 57–95.
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Control-based online optimization Algorithm design

Online quadratic problems

We start our exploration by restricting to online quadratic problems

x∗k = arg min
x∈Rn

1

2
x>Ax + 〈bk,x〉, k ∈ N

Assumptions

•
¯
λI � A = A> � λ̄I

• bk has transfer function

B(z) =
BN(z)

BD(z)
, BN(z) ∈ Rn[z], BD(z) ∈ R[z]

with BD(z) = zm +
∑m−1

i=0 biz
i ⇐ this is all we need to know

Remark: we assume that A−1 is not accessible
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Control-based online optimization Algorithm design

Control scheme

In order to achieve zero tracking error we need

lim sup
k→∞

∇fk(xk) = Axk − bk = 0

To this end we employ the control
scheme:

C(z)I

∇fk(·)

ek xk

where

• the gradient ∇fk is the plant,
and

• we need to design the controller
(via its transfer function
C(z) ∈ R[z])
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Control-based online optimization Algorithm design

Control design

With some manipulations, the Z-transform of ek = ∇fk(xk) is given by

E(z) = (I − C(z)A)−1B(z)

We choose the controller

C(z) =
CN(z)

BD(z)
, with CN(z) =

m−1∑

i=0

ciz
i

where the denominator serves as internal model, and we get

E(z) = (BD(z)I − CN(z)A)−1BN(z)

I the goal then is to design CN(z) to stabilize the feedback
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Control-based online optimization Algorithm design

Stabilizing controller

The poles of (BD(z)I − CN(z)A)−1 are stable if the roots of

BD(z)− CN(z)λ, ∀λ ∈ [
¯
λ, λ̄]

are inside the unit circle

I this is a linear robust control problem

By using3

I the controller (if it exists) can be found by solving a set of two LMIs

I the LMIs scale with the degree of BD(z) not with the size of the
problem

3M. de Oliveira, J. Bernussou, and J. Geromel. “A new discrete-time robust stability condition”. In: Systems & Control
Letters 37.4 (July 1999), pp. 261–265.
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Control-based online optimization Algorithm design

Control-based algorithm

We can finally characterize the online algorithm designed so far as

wk+1 =







0 1
. . .

0 · · · 0 1
−b0 · · · · · · −bm−1


⊗ I


wk +




0
...
0
1


⊗∇fk(xk)

xk+1 =
([
c0 · · · cm−1

]
⊗ I

)
wk+1

where

• w serves as the state of the internal model

• and c0, . . . , cm−1 are the coefficients of the stabilizing controller

Remark: the algorithm only accesses an oracle of the gradient
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Control-based online optimization Convergence analysis

Convergence results

Convergence

Given a stabilizing controller, the online algorithm verifies

lim sup
k→∞

‖xk − x∗k‖ = 0

I What if an inexact internal model is used?

Convergence: inexact model

Using the inexact model B̂D(z) = zm +
∑m−1

i=0 b̂iz
i and if ‖bk‖ ≤ β, we

have
lim sup
k→∞

‖xk − x∗k‖ ≤ O (β ‖d‖)

where d =
[
b0 − b̂0 · · · bm−1 − b̂m−1

]
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Control-based online optimization Application to general problems

Application to general problems?

So far we focused on the quadratic problem

x∗k = arg min
x∈Rn

1

2
x>Ax + 〈bk,x〉, k ∈ N

as a means to design the proposed online algorithm

The question now is:

I can we apply it to more general problems?
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Control-based online optimization Application to general problems

Application to general problems? (cont’d)

Yes, we can apply to any cost:

I the algorithm only depends on ∇fk

C(z)I

∇fk(·)

ek xk

Indeed, recall the algorithm we designed is characterized by:

wk+1 =







0 1
. . .

0 · · · 0 1
−b0 · · · · · · −bm−1


⊗ I


wk +




0
...
0
1


⊗∇fk(xk)

xk+1 =
([
c0 · · · cm−1

]
⊗ I

)
wk+1

I Question: what convergence guarantees can we give?
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Control-based online optimization Application to general problems

Convergence results: beyond quadratic

We provide here a first convergence analysis

I for the class of “perturbed quadratic” costs

fk(x) =
1

2
x>Ax + 〈bk,x〉+ ϕk(x)

Small gain assumptions

• fk is
¯
λ-strongly convex and λ̄-smooth

• we have a model for {bk} and ‖bk‖ ≤ β
• there exists γ > 0 such that ‖∇ϕk(x)‖ ≤ γ ‖x‖
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Control-based online optimization Application to general problems

Convergence results: beyond quadratic (cont’d)

The cost fk(x) = 1
2x
>Ax + 〈bk,x〉+ ϕk(x) can be interpreted as a

quadratic cost

f̂k(x) =
1

2
x>Ax + 〈bk,x〉

with a (feedback) disturbance ϕk(x)

C(z)I

A

∇ϕk(·)

bk

++

ek xk

dk

∇f̂k(·)

I can we guarantee stability?
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Control-based online optimization Application to general problems

Convergence results: beyond quadratic (cont’d)

If we design the controller C(z) = CN (z)
CD(z) such that

1 internal model : CD(z) includes all the poles of BD(z)

2 stability : CN (z) stabilizes the feedback without disturbance

3 small gain:
∥∥C(z)(I − C(z)A)−1

∥∥
∞ ≤ 1/γ

Then the output xk of the algorithm verifies

lim sup
k→∞

‖xk − x∗k‖ ≤

∥∥(I − C(z)A)−1
∥∥
∞

βγ
∥∥C(z)(I − C(z)A)−1

∥∥
∞

1− γ ‖C(z)(I − C(z)A)−1‖∞
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Control-based online optimization Application to general problems

Designing the controller

For stability of the feedback loop we need:

1 internal model : CD(z) includes all the poles of BD(z)

2 stability : CN (z) stabilizes the feedback without disturbance

3 small gain:
∥∥C(z)(I − C(z)A)−1

∥∥
∞ ≤ 1/γ

This means that we can choose CD(z) = BD(z)P (z)

• where BD(z) accounts for the poles of the linear term 1

• and P (z) is a new design parameter

The goal then is to

I choose P (z) to improve convergence for the “quadratically
perturbed” problems (and verify 2 , 3 )
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Control-based online optimization Numerical results

Time-varying bk

We consider problem

x∗k = arg min
x∈Rn

1

2
x>Ax + 〈bk,x〉, k ∈ N

with

• n = 500

•
¯
λ = 1, λ̄ = 10

and, four different models of bk:

1 ramp: bk = kb̄

2 sine: bk = sin (ωk)1, ω = 1

3 sine+ramp: bk = sin (ωk)1 + kb̄

4 squared sine: bk = sin2 (ωk)1
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Control-based online optimization Numerical results

Time-varying bk (cont’d)
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Control-based online optimization Numerical results

Time-varying bk (cont’d)

Consider the inexact sinusoidal model:

B̂D(z) = z2 − 2 cos(ω̂)z − 1

where ω̂ ∈ [0.5, 1] (recalling ω = 1)
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Control-based online optimization Numerical results

Non-quadratic problem

We consider the “perturbed quadratic” cost

fk(x) =
1

2
x>Ax + 〈b,x〉+ sin(ωk) log (1 + exp〈c,x〉)

Considering that the problem is periodic

I as internal model we choose the first L terms of the Fourier series of
a periodic signal

CD(z) = (z − 1)

L∏

`=1

(z2 − 2 cos(`ω)z + 1)

with L = 1, 2, 3
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Control-based online optimization Numerical results

Non-quadratic problem (cont’d)
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Constrained problems

Constrained problems

• Can we apply our approach to constrained problems?
I Yes if linear equality constraints Gx = hk

I More difficult with inequality constraints Gx ≤ hk

Consider the second case:

min fk(x) s.t. Gx ≤ hk

which can be reformulated as

min
x

max
w≥0

Lk (x,w) := fk (x) + w> (Gx− hk)

I we still need to ensure limk→∞

∥∥∥∥
[
∇xLk (xk,wk)
∇wLk (xk,wk)

]∥∥∥∥ = 0

I but: nonnegativity of w acts as saturation ⇒ we can apply
anti-windup
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Constrained problems

Algorithm design

C (z)

[
∇xLk(·, ·)
∇wLk(·, ·)

]

ek xk

fk wkvk

− +

+
ρ

• if ρ = 0: controller without anti-windup
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Constrained problems

Numerical results

We consider min fk(x) s.t. Gx ≤ hk with bk and hk sinusoidal signals
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Identifying the Internal Model

Identifying the internal model

So far we know that: exact convergence requires an exact internal model

I How to get this information in practice?

Consider the usual quadratic problem

x∗k = arg min
x∈Rn

1

2
x>Ax + 〈bk,x〉, k ∈ N

We need to identify the denominator BD(z) = zm +
∑m−1

i=0 biz
i of the

transfer function:

B(z) =
BN(z)

BD(z)
, BN(z) ∈ Rn[z], BD(z) ∈ R[z]
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Identifying the Internal Model

Identifying the internal model (cont’d)

If Error ≤ Threshold

Recursive Least Squares IDOnline Gradient Descent

Compute Controller Internal Model Based Optimization Recursive Least Squares ID

If Error ≤ Previous
Best Error
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Identifying the Internal Model

Numerical results
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Identifying the Internal Model

Numerical results
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Conclusions

Conclusions

1 The challenge of online optimization
I tracking time-varying solution within some precision and in real time

2 Structured algorithms
I exploiting a model of the problem allows to improve performance

3 Control for online optimization
I leverage powerful control tools to design online algorithms
I e.g. internal model, robust control, small gain theorem, anti-windup

Future directions (we need you):

• convergence guarantees for inequality constrained problems
I analyzing the impact of anti-windup

• convergence guarantees for SIMBO

• applying non-linear model identification in4

4G. Bianchin and B. V. Scoy. The Internal Model Principle of Time-Varying Optimization. arXiv: 2407.08037[math].
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Conclusions

Thank you!

For more info: https://bastianello.me

References:
• N. Bastianello, R. Carli, and S. Zampieri, “Internal Model-Based

Online Optimization,” IEEE Trans. Automat. Contr., vol. 69, no. 1,
pp. 689–696, Jan. 2024.

• U. Casti, N. Bastianello, R. Carli, and S. Zampieri, “A control
theoretical approach to online constrained optimization,” Automatica,
vol. 176, p. 112107, 2025.

• W. J. A. van Weerelt and N. Bastianello, “Control-Based Online
Distributed Optimization,” to be presented at CDC’25
(arXiv:2508.15498).

• W. J. A. van Weerelt, L. Zhang, S. Zhang, N. Bastianello.
“Self-Identifying Internal Model-Based Online Optimization”
[available soon]

43 / 43

https://bastianello.me

	Introduction
	Introduction
	Problem formulation
	Online gradient

	Control-based online optimization
	Control and optimization
	Algorithm design
	Convergence analysis
	Application to general problems
	Numerical results

	Constrained problems
	Identifying the Internal Model
	Conclusions

