

Control-Based Design of Online Optimization Algorithms

Nicola Bastianello

KTH Royal Institute of Technology, Sweden

November 14, 2025
CentraleSupélec, France

In this talk, I will discuss my joint work with:

Sandro Zampieri
(Univ. of Padova)

Ruggero Carli
(Univ. of Padova)

Umberto Casti
(Univ. of Padova)

- Wouter J. A. van Weerelt (KTH)

Partially funded through:

- Research Projects of National Interest (PRIN), Ministry of University and Research (Italy), project n. 2017CWMF93
- HORIZON Research and Innovation Actions, European Commission (EU), project no. 101070162

Outline

① Introduction

- Introduction
- Problem formulation
- Online gradient

② Control-based online optimization

- Control and optimization
- Algorithm design
- Convergence analysis
- Application to general problems
- Numerical results

③ Constrained problems

④ Identifying the Internal Model

⑤ Conclusions

From static to online

(Static) convex optimization is a fundamental tool in many engineering applications:

- ▶ e.g. machine learning, power systems, transportation networks, signal/image processing, ...

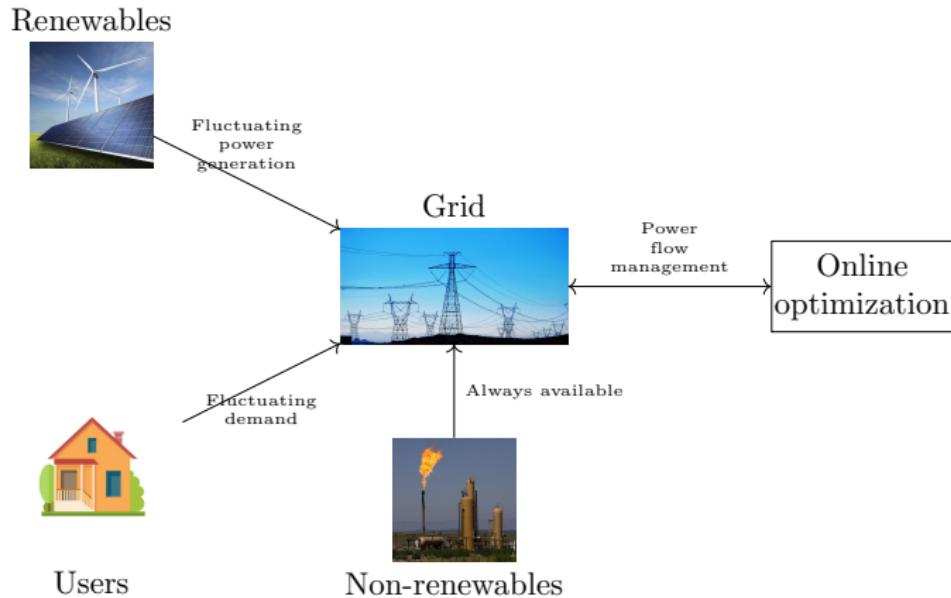
However, recent technological advances in these applications have introduced new challenges:

- ▶ we deal with *large-scale, interconnected, rapidly evolving* systems

for which traditional optimization techniques are not sufficient:

- ▶ there is a need to *revisit* and *redesign* them

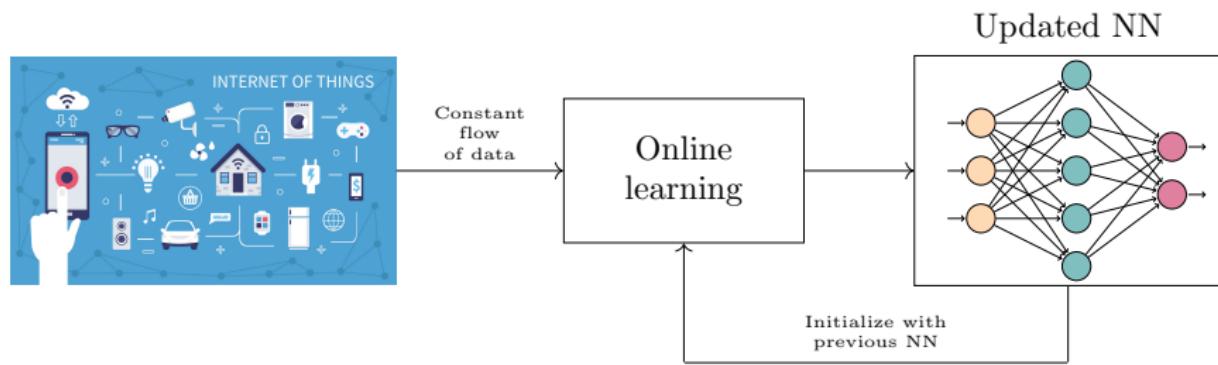
Example: Power grids



E. Dall'Anese and A. Simonetto. "Optimal Power Flow Pursuit". In: *IEEE Transactions on Smart Grid* 9.2 (Mar. 2018), pp. 942–952.

A. Lesage-Landry and D. S. Callaway. "Dynamic and Distributed Online Convex Optimization for Demand Response of Commercial Buildings". In: *IEEE Control Systems Letters* 4.3 (July 2020), pp. 632–637.

Example: Online learning



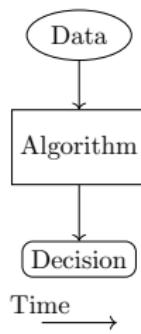
S. Shalev-Shwartz. "Online Learning and Online Convex Optimization". In: *Foundations and Trends® in Machine Learning* 4.2 (2011), pp. 107–194.

R. Dixit et al. "Online Learning with Inexact Proximal Online Gradient Descent Algorithms". In: *IEEE Transactions on Signal Processing* 67.5 (2019), pp. 1338 –1352.

Design constraints

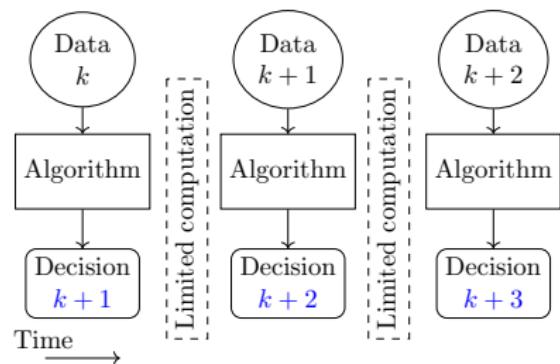
Static optimization

- static data, collected once
- large time for computation



Online optimization

- streaming, time-varying data
- very limited computation time



- ▶ We need algorithms that can handle *dynamic problems* at the *relevant time-scales*

Unstructured v. structured

We can classify online algorithms in:

- *Unstructured*:
 - ▶ we tweak static algorithms for the online set-up
 - ▶ they are “model-agnostic”
- *Structured*:
 - ▶ we design tailored algorithms
 - ▶ they are “model-based”

- ▶ I will talk about using **control theory** to design structured algorithms

Problem formulation

Formally, we are interested in solving the sequence of problems

$$\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} f_k(\mathbf{x}), \quad k \in \mathbb{N}$$

where a new problem is revealed every T_s seconds

Assumptions

- $\{f_k\}_{k \in \mathbb{N}}$ are $\underline{\lambda}$ -strongly convex and $\bar{\lambda}$ -smooth
- bounded rate of change: $\exists \Gamma_1 \geq 0$ such that

$$\|\nabla f_{k+1}(\mathbf{x}) - \nabla f_k(\mathbf{x})\| \leq \Gamma_1, \quad \forall k \in \mathbb{N}, \quad \mathbf{x} \in \mathbb{R}^n$$

- ▶ 1) unique solution trajectory $\{\mathbf{x}_k^*\}_{k \in \mathbb{N}}$; 2) bounded $\|\mathbf{x}_k^* - \mathbf{x}_{k-1}^*\|$

Solving online optimization

What do we mean by “solving an online problem”?

- ▶ *Track the optimal trajectory – within some precision and in real time*

Formally, we design an algorithm $\mathcal{A}_k : \mathbb{R}^n \rightarrow \mathbb{R}^n$

$$\mathbf{x}_{k+1} = \mathcal{A}_k(\mathbf{x}_k)$$

so that:

$$\limsup_{k \rightarrow \infty} \|\mathbf{x}_k - \mathbf{x}_k^*\| \leq B < \infty.$$

In the following:

- we want our algorithm to be *predictive*: \mathbf{x}_{k+1} will be computed during $[kT_s, (k+1)T_s)$ using f_k – not f_{k+1}

Unstructured: online gradient

A first approach is the online gradient:

$$\mathbf{x}_{k+1} = \mathcal{A}_k(\mathbf{x}_k) := \mathbf{x}_k - \alpha \nabla f_k(\mathbf{x}_k), \quad k \in \mathbb{N}$$

with $\alpha < 2/\bar{\lambda}$

Its tracking error is bounded by

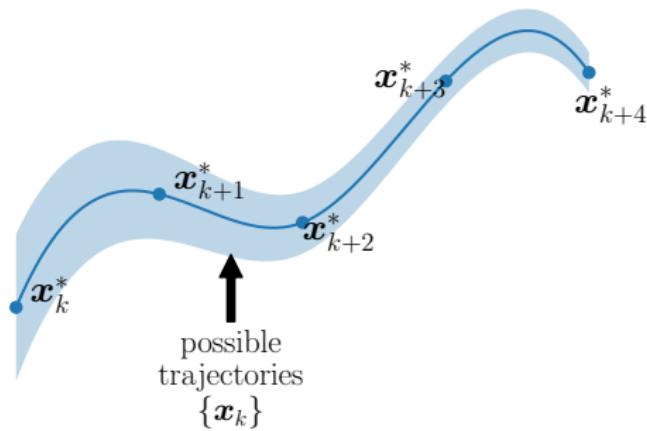
$$\limsup_{k \rightarrow \infty} \|\mathbf{x}_k - \mathbf{x}_k^*\| \leq B := \frac{1}{1 - \zeta} \frac{\Gamma_1 T_s}{\lambda}$$

where $\zeta := \max\{|1 - \alpha\lambda|, |1 - \alpha\bar{\lambda}|\} \in (0, 1)$

Unstructured: online gradient (cont'd)

As the online gradient highlights:

- tracking in general is not exact: we can only reach a *neighborhood* of the optimal trajectory



The question now is

- ▶ Can we design algorithms with *smaller (or zero) tracking error?*

Outline

① Introduction

- Introduction
- Problem formulation
- Online gradient

② Control-based online optimization

- Control and optimization
- Algorithm design
- Convergence analysis
- Application to general problems
- Numerical results

③ Constrained problems

④ Identifying the Internal Model

⑤ Conclusions

Control and optimization

Control and optimization come together in two different scenarios:

- *optimization as a tool*: we design the control input by solving an optimization problem¹
 - ▶ e.g. MPC: we choose the control input by *solving an optimization problem that changes as the state of the system changes*
- *control-based design*: we use control theory to design optimization algorithms² \Leftarrow this is what we do

We change our perspective:

- ▶ the online optimization problem is the “plant”

¹A. Hauswirth et al. “Timescale Separation in Autonomous Optimization”. In: *IEEE Transactions on Automatic Control* 66.2 (2021), pp. 611–624.

²L. Lessard, B. Recht, and A. Packard. “Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints”. In: *SIAM Journal on Optimization* 26.1 (Jan. 2016), pp. 57–95.

Online quadratic problems

We start our exploration by restricting to online *quadratic* problems

$$\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle, \quad k \in \mathbb{N}$$

Assumptions

- $\underline{\lambda} \mathbf{I} \preceq \mathbf{A} = \mathbf{A}^\top \preceq \bar{\lambda} \mathbf{I}$
- \mathbf{b}_k has transfer function

$$\mathbf{B}(z) = \frac{\mathbf{B}_N(z)}{\mathbf{B}_D(z)}, \quad \mathbf{B}_N(z) \in \mathbb{R}^n[z], \mathbf{B}_D(z) \in \mathbb{R}[z]$$

with $B_D(z) = z^m + \sum_{i=0}^{m-1} b_i z^i \quad \Leftarrow \text{this is all we need to know}$

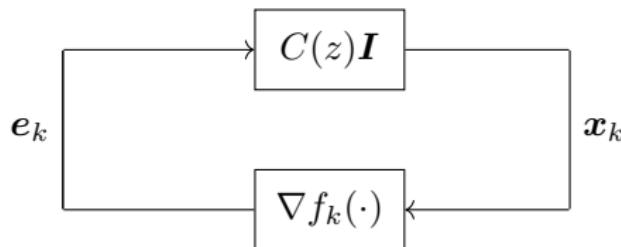
Remark: we assume that \mathbf{A}^{-1} is *not* accessible

Control scheme

In order to achieve *zero* tracking error we need

$$\limsup_{k \rightarrow \infty} \nabla f_k(\mathbf{x}_k) = \mathbf{A}\mathbf{x}_k - \mathbf{b}_k = 0$$

To this end we employ the control scheme:



where

- the gradient ∇f_k is the *plant*, and
- we need to design the controller (via its transfer function $C(z) \in \mathbb{R}[z]$)

Control design

With some manipulations, the Z-transform of $e_k = \nabla f_k(\mathbf{x}_k)$ is given by

$$\mathbf{E}(z) = (\mathbf{I} - C(z)\mathbf{A})^{-1} \mathbf{B}(z)$$

We choose the controller

$$C(z) = \frac{C_N(z)}{B_D(z)}, \quad \text{with} \quad C_N(z) = \sum_{i=0}^{m-1} c_i z^i$$

where the denominator serves as *internal model*, and we get

$$\mathbf{E}(z) = (B_D(z)\mathbf{I} - C_N(z)\mathbf{A})^{-1} \mathbf{B}_N(z)$$

- ▶ the goal then is to design $C_N(z)$ to stabilize the feedback

Stabilizing controller

The poles of $(B_D(z)\mathbf{I} - C_N(z)\mathbf{A})^{-1}$ are stable if the roots of

$$B_D(z) - C_N(z)\lambda, \quad \forall \lambda \in [\underline{\lambda}, \bar{\lambda}]$$

are inside the unit circle

- ▶ this is a linear *robust control* problem

By using³

- ▶ the controller (if it exists) can be found by solving a set of **two** LMIs
- ▶ the LMIs scale with the degree of $B_D(z)$ **not** with the size of the problem

³M. de Oliveira, J. Bernussou, and J. Geromel. "A new discrete-time robust stability condition". In: *Systems & Control Letters* 37.4 (July 1999), pp. 261–265.

Control-based algorithm

We can finally characterize the online algorithm designed so far as

$$\begin{aligned} \mathbf{w}_{k+1} &= \left(\begin{bmatrix} 0 & 1 & & \\ & \ddots & & \\ 0 & \cdots & 0 & 1 \\ -b_0 & \cdots & \cdots & -b_{m-1} \end{bmatrix} \otimes \mathbf{I} \right) \mathbf{w}_k + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \otimes \nabla f_k(\mathbf{x}_k) \\ \mathbf{x}_{k+1} &= ([c_0 \ \cdots \ c_{m-1}] \otimes \mathbf{I}) \mathbf{w}_{k+1} \end{aligned}$$

where

- \mathbf{w} serves as the state of the internal model
- and c_0, \dots, c_{m-1} are the coefficients of the stabilizing controller

Remark: the algorithm only accesses an *oracle* of the gradient

Convergence results

Convergence

Given a stabilizing controller, the online algorithm verifies

$$\limsup_{k \rightarrow \infty} \|\mathbf{x}_k - \mathbf{x}_k^*\| = 0$$

- ▶ What if an *inexact internal model* is used?

Convergence: inexact model

Using the inexact model $\hat{B}_D(z) = z^m + \sum_{i=0}^{m-1} \hat{b}_i z^i$ and if $\|\mathbf{b}_k\| \leq \beta$, we have

$$\limsup_{k \rightarrow \infty} \|\mathbf{x}_k - \mathbf{x}_k^*\| \leq O(\beta \|\mathbf{d}\|)$$

where $\mathbf{d} = [b_0 - \hat{b}_0 \quad \cdots \quad b_{m-1} - \hat{b}_{m-1}]$

Application to general problems?

So far we focused on the quadratic problem

$$\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle, \quad k \in \mathbb{N}$$

as a means to *design the proposed online algorithm*

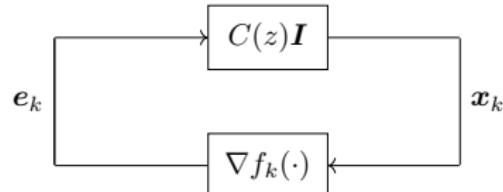
The question now is:

- ▶ can we apply it to more general problems?

Application to general problems? (cont'd)

Yes, we can apply to any cost:

- ▶ the algorithm only depends on ∇f_k



Indeed, recall the algorithm we designed is characterized by:

$$\mathbf{w}_{k+1} = \left(\begin{bmatrix} 0 & 1 & & \\ & \ddots & & \\ 0 & \cdots & 0 & 1 \\ -b_0 & \cdots & \cdots & -b_{m-1} \end{bmatrix} \otimes \mathbf{I} \right) \mathbf{w}_k + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \otimes \nabla f_k(\mathbf{x}_k)$$

$$\mathbf{x}_{k+1} = ([c_0 \ \cdots \ c_{m-1}] \otimes \mathbf{I}) \mathbf{w}_{k+1}$$

- ▶ Question: what convergence guarantees can we give?

Convergence results: beyond quadratic

We provide here a first convergence analysis

- ▶ for the class of “*perturbed quadratic*” costs

$$f_k(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle + \varphi_k(\mathbf{x})$$

Small gain assumptions

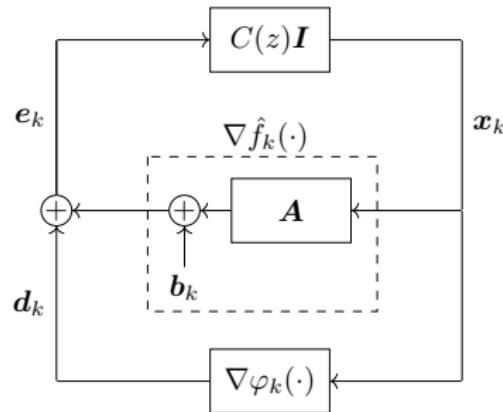
- f_k is λ -strongly convex and $\bar{\lambda}$ -smooth
- we have a model for $\{\mathbf{b}_k\}$ and $\|\mathbf{b}_k\| \leq \beta$
- there exists $\gamma > 0$ such that $\|\nabla \varphi_k(\mathbf{x})\| \leq \gamma \|\mathbf{x}\|$

Convergence results: beyond quadratic (cont'd)

The cost $f_k(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\top \mathbf{A}\mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle + \varphi_k(\mathbf{x})$ can be interpreted as a quadratic cost

$$\hat{f}_k(\mathbf{x}) = \frac{1}{2}\mathbf{x}^\top \mathbf{A}\mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle$$

with a (feedback) disturbance $\varphi_k(\mathbf{x})$



- ▶ can we guarantee stability?

Convergence results: beyond quadratic (cont'd)

If we design the controller $C(z) = \frac{C_N(z)}{C_D(z)}$ such that

- ① *internal model*: $C_D(z)$ includes all the poles of $B_D(z)$
- ② *stability*: $C_N(z)$ stabilizes the feedback without disturbance
- ③ *small gain*: $\|C(z)(\mathbf{I} - C(z)\mathbf{A})^{-1}\|_{\infty} \leq 1/\gamma$

Then the output \mathbf{x}_k of the algorithm verifies

$$\limsup_{k \rightarrow \infty} \|\mathbf{x}_k - \mathbf{x}_k^*\| \leq \frac{\beta\gamma \|C(z)(\mathbf{I} - C(z)\mathbf{A})^{-1}\|_{\infty}}{1 - \gamma \|C(z)(\mathbf{I} - C(z)\mathbf{A})^{-1}\|_{\infty}}$$

Designing the controller

For stability of the feedback loop we need:

- ① *internal model*: $C_D(z)$ includes all the poles of $B_D(z)$
- ② *stability*: $C_N(z)$ stabilizes the feedback without disturbance
- ③ *small gain*: $\|C(z)(I - C(z)A)^{-1}\|_{\infty} \leq 1/\gamma$

This means that we can choose $C_D(z) = B_D(z)P(z)$

- where $B_D(z)$ accounts for the poles of the linear term ①
- and $P(z)$ is a new design parameter

The goal then is to

- ▶ choose $P(z)$ to improve convergence for the “quadratically perturbed” problems (and verify ②, ③)

Time-varying \mathbf{b}_k

We consider problem

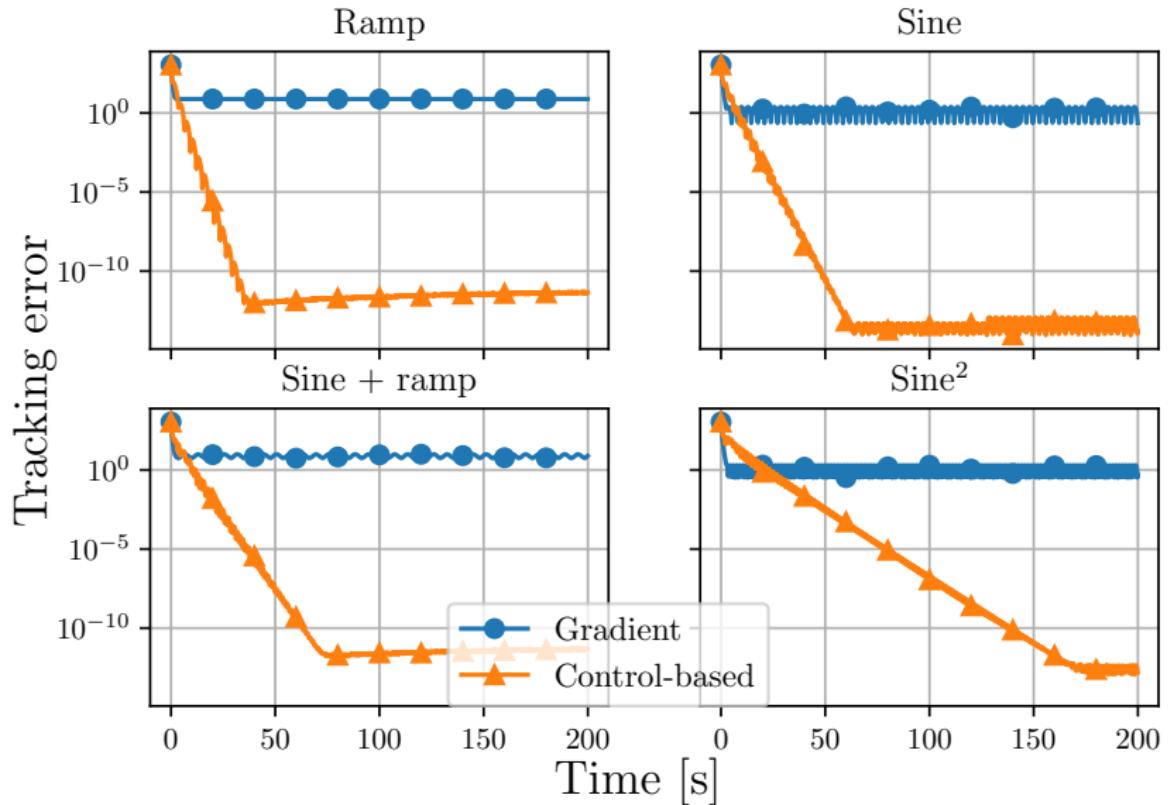
$$\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle, \quad k \in \mathbb{N}$$

with

- $n = 500$
- $\underline{\lambda} = 1, \bar{\lambda} = 10$

and, four different models of \mathbf{b}_k :

- ① ramp: $\mathbf{b}_k = k \bar{\mathbf{b}}$
- ② sine: $\mathbf{b}_k = \sin(\omega k) \mathbf{1}, \omega = 1$
- ③ sine+ramp: $\mathbf{b}_k = \sin(\omega k) \mathbf{1} + k \bar{\mathbf{b}}$
- ④ squared sine: $\mathbf{b}_k = \sin^2(\omega k) \mathbf{1}$

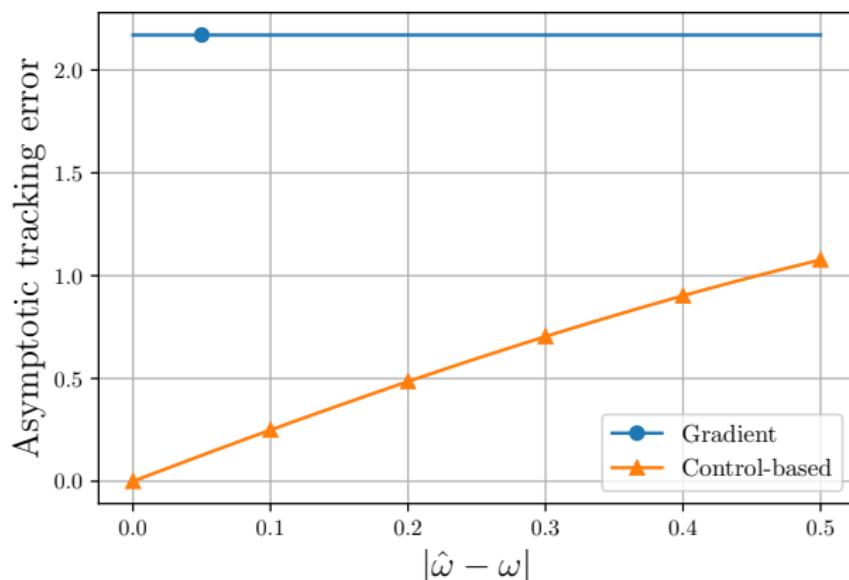
Time-varying b_k (cont'd)

Time-varying b_k (cont'd)

Consider the inexact sinusoidal model:

$$\hat{B}_D(z) = z^2 - 2 \cos(\hat{\omega})z - 1$$

where $\hat{\omega} \in [0.5, 1]$ (recalling $\omega = 1$)



Non-quadratic problem

We consider the “perturbed quadratic” cost

$$f_k(\mathbf{x}) = \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}, \mathbf{x} \rangle + \sin(\omega k) \log(1 + \exp\langle \mathbf{c}, \mathbf{x} \rangle)$$

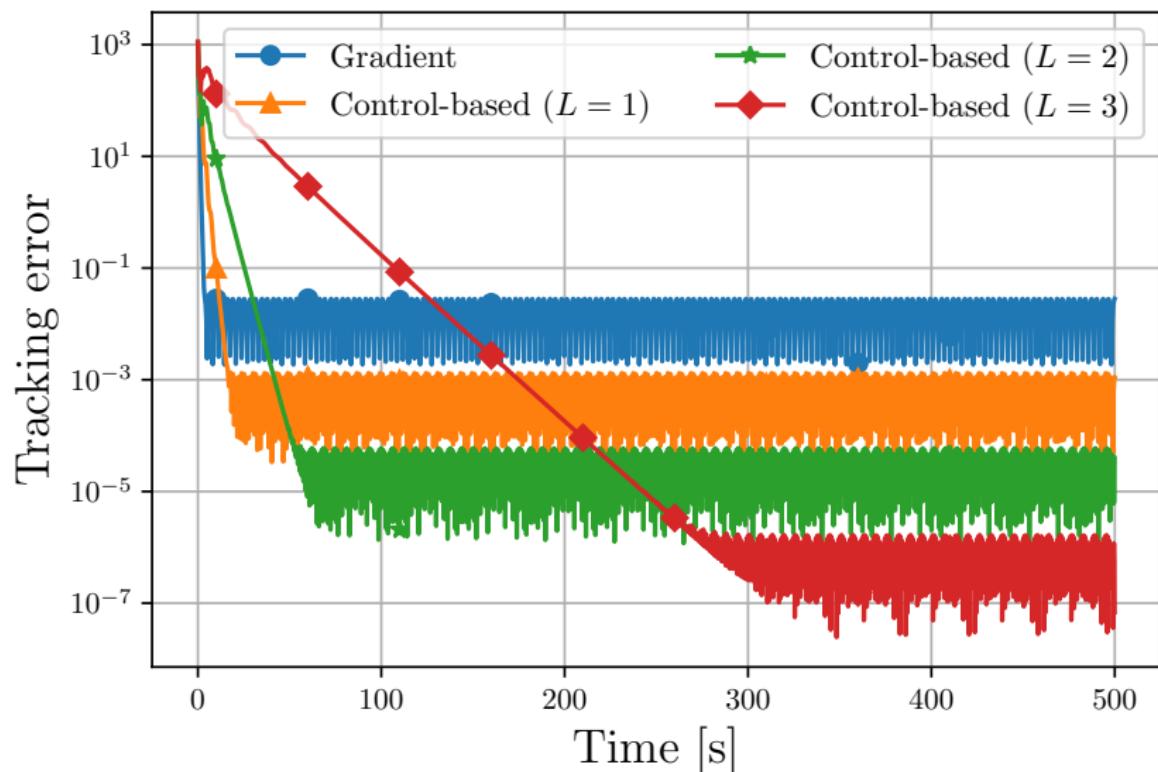
Considering that the problem is periodic

- ▶ as internal model we choose the first L terms of the Fourier series of a periodic signal

$$C_D(z) = (z - 1) \prod_{\ell=1}^L (z^2 - 2 \cos(\ell\omega)z + 1)$$

with $L = 1, 2, 3$

Non-quadratic problem (cont'd)



Outline

① Introduction

- Introduction
- Problem formulation
- Online gradient

② Control-based online optimization

- Control and optimization
- Algorithm design
- Convergence analysis
- Application to general problems
- Numerical results

③ Constrained problems

④ Identifying the Internal Model

⑤ Conclusions

Constrained problems

- Can we apply our approach to *constrained* problems?
 - ▶ Yes if linear equality constraints $\mathbf{G}\mathbf{x} = \mathbf{h}_k$
 - ▶ More difficult with inequality constraints $\mathbf{G}\mathbf{x} \leq \mathbf{h}_k$

Consider the second case:

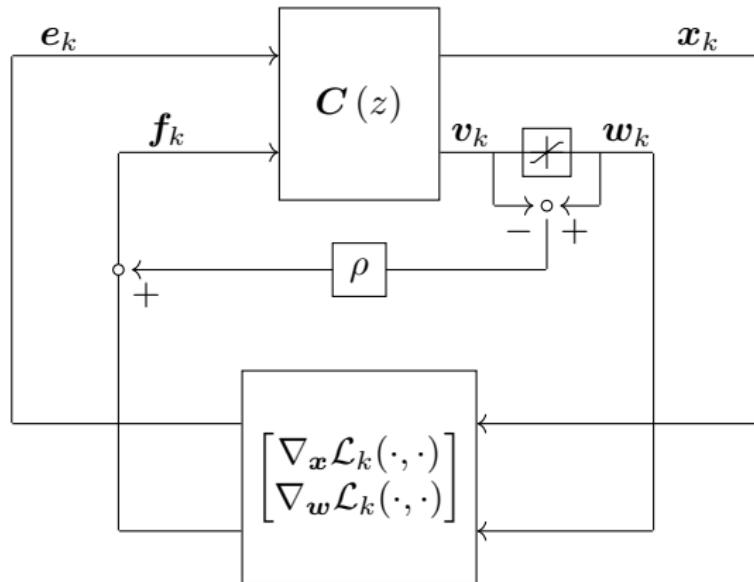
$$\min f_k(\mathbf{x}) \quad \text{s.t.} \quad \mathbf{G}\mathbf{x} \leq \mathbf{h}_k$$

which can be reformulated as

$$\min_{\mathbf{x}} \max_{\mathbf{w} \geq 0} \mathcal{L}_k(\mathbf{x}, \mathbf{w}) := f_k(\mathbf{x}) + \mathbf{w}^\top (\mathbf{G}\mathbf{x} - \mathbf{h}_k)$$

- ▶ we still need to ensure $\lim_{k \rightarrow \infty} \left\| \begin{bmatrix} \nabla_{\mathbf{x}} \mathcal{L}_k(\mathbf{x}_k, \mathbf{w}_k) \\ \nabla_{\mathbf{w}} \mathcal{L}_k(\mathbf{x}_k, \mathbf{w}_k) \end{bmatrix} \right\| = 0$
- ▶ **but:** nonnegativity of \mathbf{w} acts as *saturation* \Rightarrow we can apply *anti-windup*

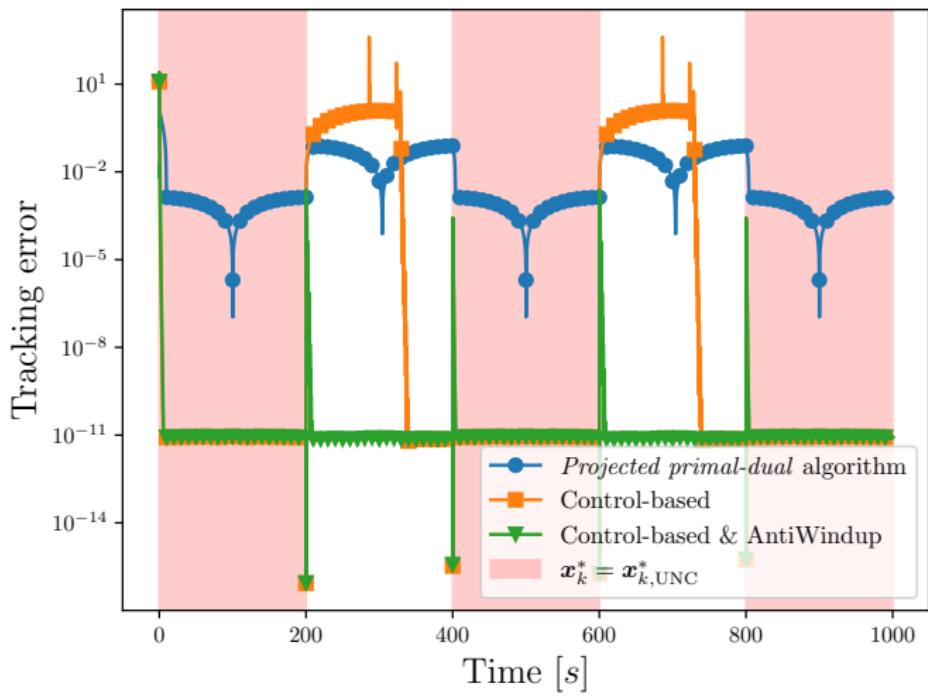
Algorithm design



- if $\rho = 0$: controller without anti-windup

Numerical results

We consider $\min f_k(\mathbf{x})$ s.t. $\mathbf{Gx} \leq \mathbf{h}_k$ with \mathbf{b}_k and \mathbf{h}_k sinusoidal signals



Outline

① Introduction

- Introduction
- Problem formulation
- Online gradient

② Control-based online optimization

- Control and optimization
- Algorithm design
- Convergence analysis
- Application to general problems
- Numerical results

③ Constrained problems

④ Identifying the Internal Model

⑤ Conclusions

Identifying the internal model

So far we know that: exact convergence requires an *exact internal model*

- ▶ How to get this information in practice?

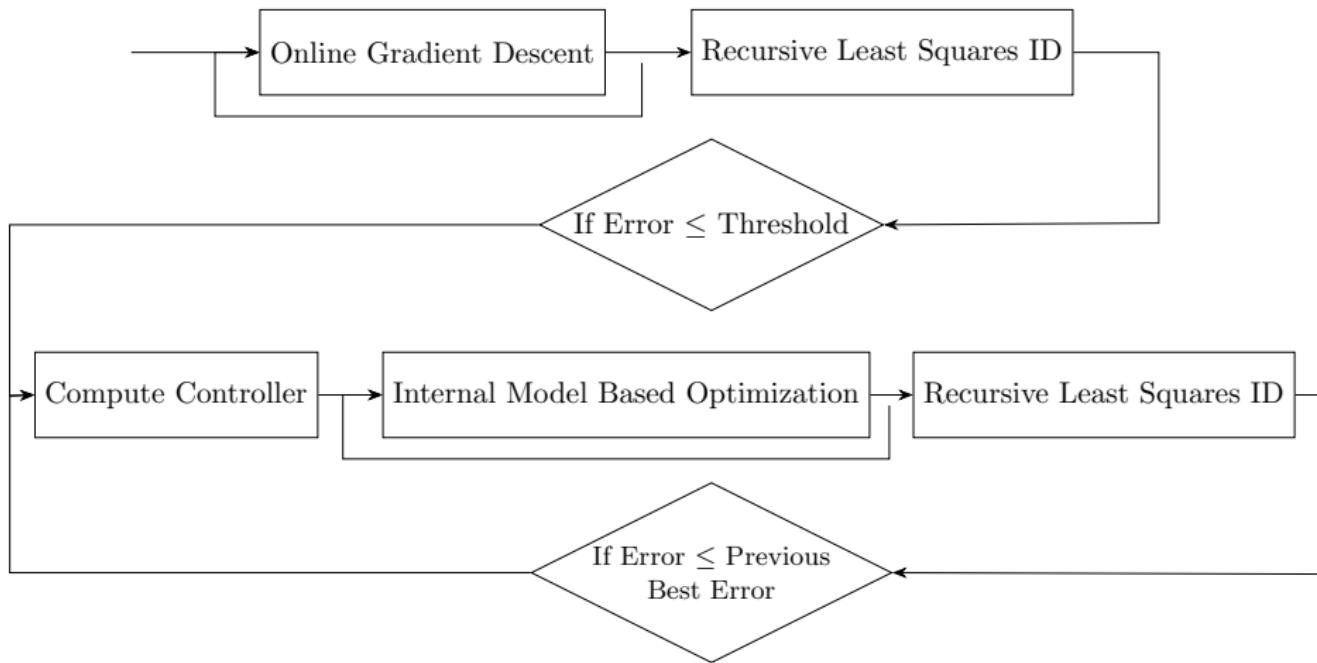
Consider the usual quadratic problem

$$\mathbf{x}_k^* = \arg \min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{2} \mathbf{x}^\top \mathbf{A} \mathbf{x} + \langle \mathbf{b}_k, \mathbf{x} \rangle, \quad k \in \mathbb{N}$$

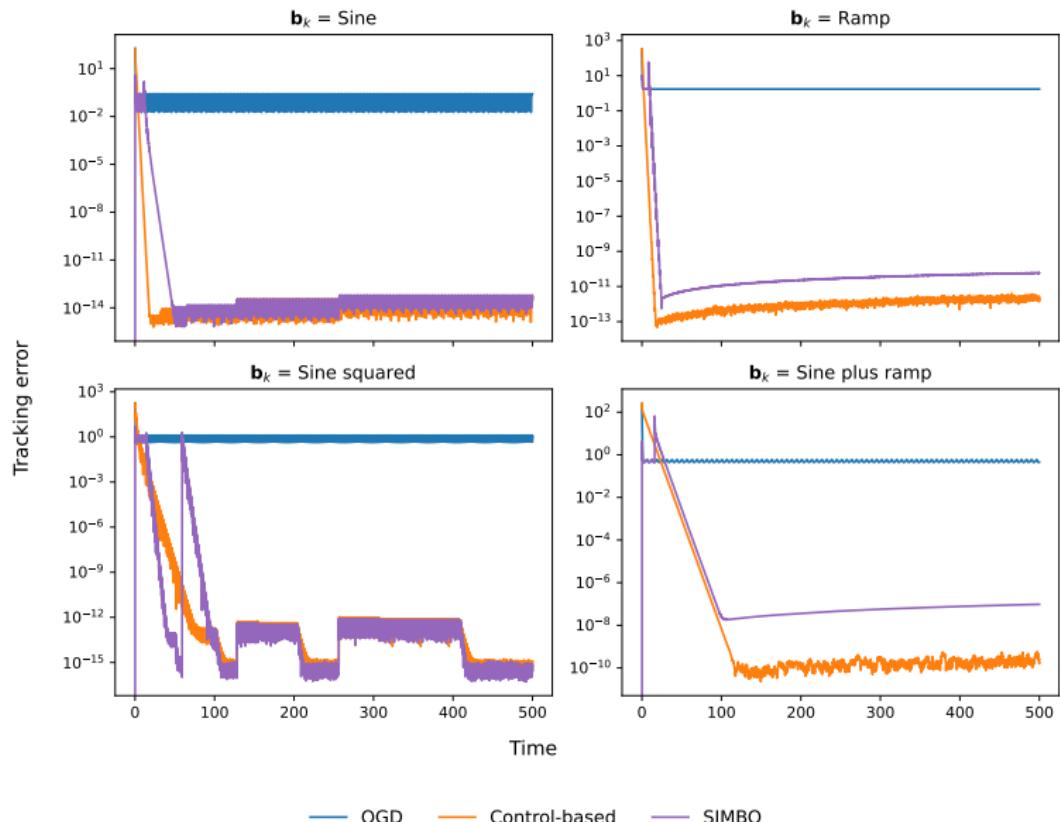
We need to identify the denominator $B_D(z) = z^m + \sum_{i=0}^{m-1} b_i z^i$ of the transfer function:

$$\mathbf{B}(z) = \frac{\mathbf{B}_N(z)}{B_D(z)}, \quad \mathbf{B}_N(z) \in \mathbb{R}^n[z], B_D(z) \in \mathbb{R}[z]$$

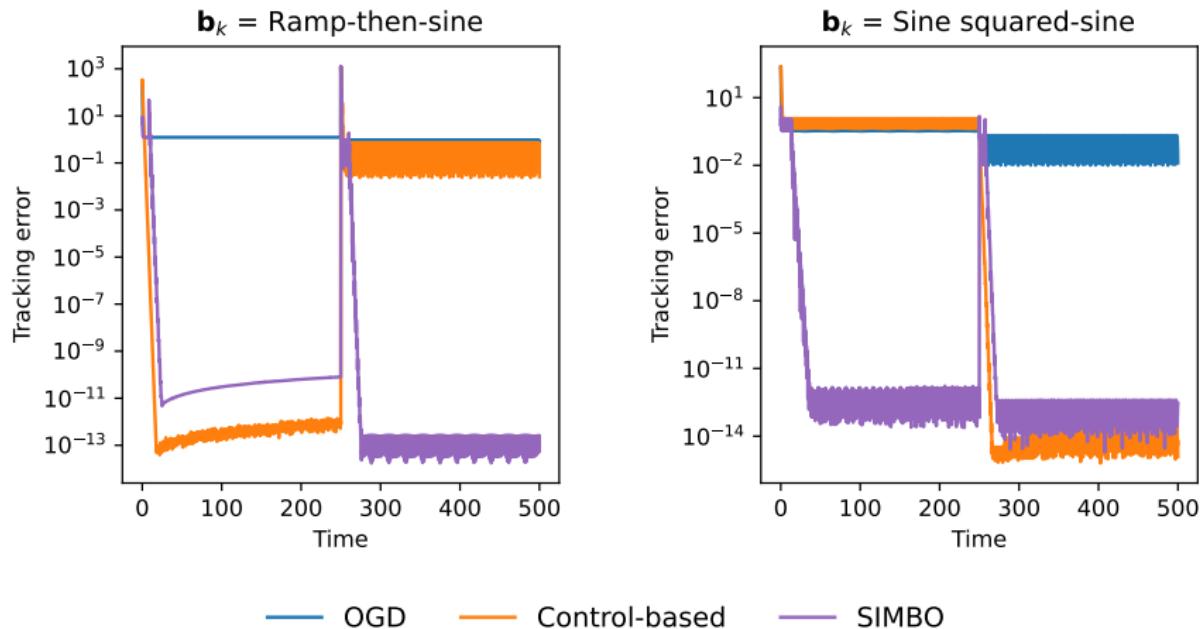
Identifying the internal model (cont'd)



Numerical results



Numerical results



Outline

① Introduction

- Introduction
- Problem formulation
- Online gradient

② Control-based online optimization

- Control and optimization
- Algorithm design
- Convergence analysis
- Application to general problems
- Numerical results

③ Constrained problems

④ Identifying the Internal Model

⑤ Conclusions

Conclusions

- ① The challenge of online optimization
 - ▶ tracking time-varying solution *within some precision and in real time*
- ② Structured algorithms
 - ▶ exploiting a *model* of the problem allows to improve performance
- ③ Control for online optimization
 - ▶ leverage powerful control tools to design online algorithms
 - ▶ e.g. internal model, robust control, small gain theorem, anti-windup

Future directions (**we need you**):

- convergence guarantees for inequality *constrained* problems
 - ▶ analyzing the impact of **anti-windup**
- convergence guarantees for SIMBO
- applying non-linear model identification in⁴

⁴G. Bianchin and B. V. Scov. *The Internal Model Principle of Time-Varying Optimization*. arXiv: 2407.08037 [math].

Thank you!

For more info: <https://bastianello.me>

References:

- N. Bastianello, R. Carli, and S. Zampieri, "Internal Model-Based Online Optimization," *IEEE Trans. Automat. Contr.*, vol. 69, no. 1, pp. 689–696, Jan. 2024.
- U. Casti, N. Bastianello, R. Carli, and S. Zampieri, "A control theoretical approach to online constrained optimization," *Automatica*, vol. 176, p. 112107, 2025.
- W. J. A. van Weerelt and N. Bastianello, "Control-Based Online Distributed Optimization," to be presented at *CDC'25* (arXiv:2508.15498).
- W. J. A. van Weerelt, L. Zhang, S. Zhang, N. Bastianello, "Self-Identifying Internal Model-Based Online Optimization" [available soon]