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Introduction Introduction

From static to online

(Static) convex optimization is a fundamental tool in many engineering
applications:

» e.g. machine learning, power systems, transportation networks,
signal /image processing, ...

However, recent technological advances in these applications have
introduced new challenges:

» we deal with large-scale, interconnected, rapidly evolving systems

for which traditional optimization techniques are not sufficient:

> there is a need to revisit and redesign them
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Introduction Introduction

Example: Power grids
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E. Dall'Anese and A. Simonetto. “Optimal Power Flow Pursuit”. In: |EEE Transactions on Smart Grid 9.2 (Mar. 2018),
pp. 942-952.
A. Lesage-Landry and D. S. Callaway. “Dynamic and Distributed Online Convex Optimization for Demand Response of
Commercial Buildings”. In: |[EEE Control Systems Letters 4.3 (July 2020), pp. 632-637.
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Introduction Introduction

Example: Online learning
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S. Shalev-Shwartz. “Online Learning and Online Convex Optimization”. In: Foundations and Trends®) in Machine Learning
4.2 (2011), pp. 107-194.

R. Dixit et al. “Online Learning with Inexact Proximal Online Gradient Descent Algorithms”. In: IEEE Transactions on
Signal Processing 67.5 (2019), pp. 1338 —1352.

6/43



Introduction Introduction

Design constraints

Static optimization Online optimization

e static data, collected once * streaming, time-varying data

o large time for computation e very limited computation time
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» We need algorithms that can handle dynamic problems at the relevant
time-scales



Introduction Introduction

Unstructured v. structured

We can classify online algorithms in:
e Unstructured:

» we tweak static algorithms for the online set-up
> they are “model-agnostic”

e Structured:

> we design tailored algorithms
> they are “model-based”

» | will talk about using control theory to design structured algorithms

A. Simonetto et al. “Time-Varying Convex Optimization: Time-Structured Algorithms and Applications”. In: Proceedings
of the IEEE 108.11 (Nov. 2020), pp. 2032-2048.
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Introduction Problem formulation

Problem formulation
Formally, we are interested in solving the sequence of problems

x; = argmin fi(x), keN
xzcR"

where a new problem is revealed every T seconds

e {fx}ren are A-strongly convex and A-smooth
e bounded rate of change: 41 > 0 such that

IV fes1(z) = V(@) <11, VEeEN, zeR"

> 1) unique solution trajectory {x} }ren; 2) bounded ||z} — x}_, ||



Introduction Problem formulation

Solving online optimization

What do we mean by “solving an online problem™?

» Track the optimal trajectory — within some precision and in real time

Formally, we design an algorithm A; : R™ — R™

Tp1 = Ax(x)

so that:

limsup ||z — )| < B < o0.
k—o0

In the following:

e we want our algorithm to be predictive: xj1 will be computed
during [kTy, (k 4+ 1)T) using fx — not fri1
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Introduction Online gradient

Unstructured: online gradient

A first approach is the online gradient:

T4l = Ak(wk) =T — onfk(a:k), keN

with o < 2/

Its tracking error is bounded by

1 T,
limsup ||xr — x| < B := —— L0
k—oo 1*< 2\

where ¢ := max{|1 — a)|, |1 — a)|} € (0,1)

E. Dall’Anese et al. “Optimization and Learning With Information Streams: Time-varying algorithms and applications”. In:
IEEE Signal Processing Magazine 37.3 (May 2020), pp. 71-83.
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Introduction Online gradient

Unstructured: online gradient (cont'd)

As the online gradient highlights:

e tracking in general is not exact: we can only reach a neighborhood of
the optimal trajectory

possible
trajectories

{zi}

The question now is
» Can we design algorithms with smaller (or zero) tracking error?
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Control-based online optimization Control and optimization

Control and optimization

Control and optimization come together in two different scenarios:

e optimization as a tool: we design the control input by solving an
optimization problem!?
» e.g. MPC: we choose the control input by solving an optimization
problem that changes as the state of the system changes

e control-based design: we use control theory to design optimization

algorithms® <« this is what we do

We change our perspective:

» the online optimization problem is the “plant”

LA. Hauswirth et al. “Timescale Separation in Autonomous Optimization”. In: /EEE Transactions on Automatic Control 66.2
(2021), pp. 611-624.
2L, Lessard, B. Recht, and A. Packard. “Analysis and Design of Optimization Algorithms via Integral Quadratic Constraints”.
In: SIAM Journal on Optimization 26.1 (Jan. 2016), pp. 57-95.
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Control-based online optimization Algorithm design

Online quadratic problems

We start our exploration by restricting to online quadratic problems

1
x; = argmin —x' Az + (b, z), kN
TceR™

Assumptions
e M <A=AT <)I

e b, has transfer function

B(z) = Bn(z) € R"[2], Bp(2) € R[¢]

with Bp(2) = 2™ 4+ 3.7 biz' < this is all we need to know

Remark: we assume that A~! is not accessible
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Algorithm design
Control scheme

In order to achieve zero tracking error we need

limsup V fi(xr) = Az — b, =0

k—oo

To this end we employ the control

where
scheme:
e the gradient V f is the plant,
C()I and
e we need to design the controller
€L Tk

(via its transfer function

V() C(z) € R[2])
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Algorithm design
Control design

With some manipulations, the Z-transform of e = V fi.(xx) is given by

E(z)= (I —-C(2)A) ' B(2)

We choose the controller

m—1
C(z) = 2222, with Cn(z) = ; izt

where the denominator serves as internal model, and we get

E(z) = (Bp(z)I — Ox(2)A) " Bx(2)
» the goal then is to design Cx(z) to stabilize the feedback
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Control-based online optimization Algorithm design

Stabilizing controller

The poles of (Bp(z)I — Cx(z)A)~" are stable if the roots of

BD(Z) — CN(Z))\, WS [2\, 5\]
are inside the unit circle

» this is a linear robust control problem

By using>

» the controller (if it exists) can be found by solving a set of two LMIs

» the LMIs scale with the degree of Bp(z) not with the size of the
problem

3M. de Oliveira, J. Bernussou, and J. Geromel. “A new discrete-time robust stability condition”. In: Systems & Control
Letters 37.4 (July 1999), pp. 261-265.
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Control-based online optimization Algorithm design

Control-based algorithm

We can finally characterize the online algorithm designed so far as

0 1 0
w = QI | wr + : RV fi(x
k+1 0 . o ) g Jr(xr)
—by —by—1 1
Tyl = ([Co Cmﬂ] ® I) W1

where
e w serves as the state of the internal model

e and ¢g,...,cnm—1 are the coefficients of the stabilizing controller

Remark: the algorithm only accesses an oracle of the gradient

19/43



Control-based online optimization Convergence analysis

Convergence results

Convergence

Given a stabilizing controller, the online algorithm verifies
limsup ||z — x| =0

k—o0

» What if an inexact internal model is used?

Convergence: inexact model

Using the inexact model ED(z) =2z"+ Z?EOI bzt and if |b|| < B, we
have

limsup ||z — zi|| < O (B]d]])

k—ro0
where d = [bo — I;O cee bm—l - Bm—l]
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Control-based online optimization Application to general problems

Application to general problems?

So far we focused on the quadratic problem
* 1 T
x; =argmin —x' Az + (by,x), k€N
TER™

as a means to design the proposed online algorithm

The question now is:

» can we apply it to more general problems?

21/43



Application to general problems
Application to general problems? (cont'd)

Yes, we can apply to any cost:
ey

» the algorithm only depends on V fi

1

Indeed, recall the algorithm we designed is characterized by:

0 1 0
Wht = @I | wg + : ® V fi(zk
FH 0 .- 0 1 0 ()
N 1
Tpt1 = ([Co Cm—1] ® I) Wit1

» Question: what convergence guarantees can we give?



Control-based online optimization Application to general problems

Convergence results: beyond quadratic

We provide here a first convergence analysis

» for the class of “perturbed quadratic” costs

Ful@) = %:cTA:c  (bp, @) + i (@)

Small gain assumptions

e f5 is A-strongly convex and A-smooth
e we have a model for {by} and [|by| < 8
e there exists 7 > 0 such that ||V (z)|| < v ||
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Control-based online optimization Application to general problems

Convergence results: beyond quadratic (cont'd)

The cost fi(x) = 1" Az + (b, ) + ¢i(z) can be interpreted as a
quadratic cost

p 1
Jr(®) = ?BTAiB + (bi, x)
with a (feedback) disturbance @y (x)

> can we guarantee stability?
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Control-based online optimization Application to general problems

Convergence results: beyond quadratic (cont'd)

If we design the controller C(z) = gNE ; such that

@ internal model: Cp(z) includes all the poles of Bp(z)
@® stability: Cn(z) stabilizes the feedback without disturbance
© small gain: HC(z)(I - C(Z)A)_IHOO <1/~v

Then the output x; of the algorithm verifies

lim sup [z — 27| <
k—o00

Br|[C)T - Cx)A) |
* 1=y [C(x)I - C(2)A)~

Iz —c1a)™|

oo
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Control-based online optimization Application to general problems

Designing the controller

For stability of the feedback loop we need:
@ internal model: Cp(z) includes all the poles of Bp(z)

@® stability: Cn(z) stabilizes the feedback without disturbance
© small gain: |C(2)(I — C(2)A) | <1/

This means that we can choose Cp(z) = Bp(2)P(2)
e where Bp(z) accounts for the poles of the linear term @

e and P(z) is a new design parameter

The goal then is to

» choose P(z) to improve convergence for the “quadratically
perturbed” problems (and verify @ , @ )
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Numerical resuls
Time-varying by,

We consider problem

1
x; = argmin —x' Az + (b, z), keN
xcR™

and, four different models of by:
® ramp: b, = kb
@® sine: by =sin (wk)1, w=1
© sinetramp: by, = sin (wk) 1 + kb
O squared sine: by = sin® (wk) 1

27 /43



Numerical reslts
Time-varying by, (cont'd)

Ramp Sine
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Time-varying by (cont'd)
Consider the inexact sinusoidal model:

Bp(z) = 2% — 2cos(@)z — 1
where @ € [0.5,1] (recalling w = 1)
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Control-based online optimization Numerical results

Non-quadratic problem

We consider the “perturbed quadratic” cost

ful@) = %mTAac (b, @) + sin(wk) log (1 + exp(c, )

Considering that the problem is periodic

» as internal model we choose the first L terms of the Fourier series of
a periodic signal

L
Cp(z) = (z — 1) [[(2* — 2cos(tw)z + 1)
/=1

with L =1,2,3
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Control-based online optimization

Numerical results

Non-quadratic problem (cont’d)
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Outline

© Constrained problems

32/43



Constrained problems

Constrained problems

e Can we apply our approach to constrained problems?

> Yes if linear equality constraints G = hy,
» More difficult with inequality constraints Gx < hy,

Consider the second case:
min fx(x) st Gz < hy
which can be reformulated as

minmax Ly (x,w) = fi () +w' (Gx — hy)

z w>0

» we still need to ensure limy,_, o, H [vwﬁk (@, wk)}

VL (Tk, i)
» but: nonnegativity of w acts as saturation = we can apply
anti-windup
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Constrained problems

Algorithm design

€k

e if p = 0: controller without anti-windup

Wk

fi C(2) -

< 1]
|:vac£'k('a ):|
vw£k('7 )
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Constrained problems

Numerical results

We consider min fi(x) s.t. G < hy with by and hy, sinusoidal signals
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Outline

O ldentifying the Internal Model
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|dentifying the internal model

So far we know that: exact convergence requires an exact internal model

» How to get this information in practice?
Consider the usual quadratic problem

1
x; = argmin —x' Az + (b, z), k€N
zER™

We need to identify the denominator Bp(z) = 2™ + Y7 biz* of the
transfer function:

B(z) = By (z) € R"[z], Bp(z) € R[Z]
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|dentifying the internal model (cont'd)

*’—} Online Gradient Descent ——> Recursive Least Squares ID

If Error < Threshold

> Compute Controller T Internal Model Based Optimization —>| Recursive Least Squares ID

If Error < Previous
Best Error
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Identifying the Internal Model

Numerical results

by = Sine by = Ramp
10° §
10! 10! 4 ll
10-2 4 1071 4
1073 4
1075 4
10754
1078 107 1
1071 1071
10-11
1071 10-12 :
I
b5t = Sine squared by = Sine plus ramp
10° §
2 10
¥ 10° \i\
© 10°
= 1073 4
1072 4
1076 4
10744
- |
10 1076 4
-12 |
10 108 4
1075 10-10
0 100 200 300 400 500 0 100 200 300 400 500
Time
—— OGD  —— Control-based = —— SIMBO

39/43



Identifying the Internal Model

Numerical results

by, = Ramp-then-sine by = Sine squared-sine
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©® Conclusions
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Conclusions

Conclusions

@ The challenge of online optimization

> tracking time-varying solution within some precision and in real time
@® Structured algorithms

> exploiting a model of the problem allows to improve performance
©® Control for online optimization

> leverage powerful control tools to design online algorithms
> e.g. internal model, robust control, small gain theorem, anti-windup

Future directions (we need you):

e convergence guarantees for inequality constrained problems
» analyzing the impact of anti-windup

e convergence guarantees for SIMBO

e applying non-linear model identification in*

4G. Bianchin and B. V. Scoy. The Internal Model Principle of Time-Varying Optimization. arXiv: 2407.08037 [math].
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http://arxiv.org/abs/2407.08037 [math]

Thank you!

For more info: https://bastianello.me
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