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Motivation: hybrid discrete optimization

: o
min + =
min 7 (u) + = [lul

F tracking, discrepancy term (involving PDEs)
U discrete set
U={uelP(Q):u(x)e{ur,...,uqs} ae}

us,...,Uq given voltages, velocities, materials, ...
(assumed here: ranking by magnitude possible!)

motivation: topology optimization, medical imaging

Overview



Motivation: penalty

Overview

convex relaxation: replace U by convex hull u(x) € [u1, uq]

works only for d = 2, cf. bang-bang control (o = 0)

~» promote u(x) € {u,...,Uq} by convex pointwise penalty
6) = [ gt ax

generalize L" norm: polyhedral epigraph with vertices uq, ..., uqg

not exact relaxation/penalization (in general)!



Motivation: penalty

generalize L' norm: polyhedral epigraph with vertices uq, ..., ug

motivation: convex envelope of
%Uz + by

multi-bang (generalized
bang-bang) control

~» non-smooth optimization in
function spaces

Overview
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Convex analysis: motivation

f : R — R differentiable:

derivative:

flu+h) - f) f(u)
h

f'(u) = lim

geometrically:
f’(u) tangent slope

u @+ (frw),u)

f(@) =min, f(u) = f'(u) =0 u

calculus for f’

Nonsmooth optimization 5/m



Convex relaxation: motivation

f : R — R not differentiable, convex:

directional derivative:

filuihy = t|l>r9+ t

but: for all h,

fi(u;h) #0

Nonsmooth optimization

flu+th) - f(u)

f@) +(f (@ 1), u)
fw)

f@) +<(f(u;=1),u)
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Convex relaxation: motivation

f : R — R not differentiable, convex:

subdifferential:
of (u) ={u": (u",h) < f'(u;h)}

geometrically: 9f (u) set of
tangent slopes

fw) =min, f(u) = 0€edf(u)

calculus for af under regularity
conditions

Nonsmooth optimization

of (u)

flu)

o, f@+0u
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Fenchel duality

F:V-oR:=RU {+o0} convex, V Banach space, V* dual space

subdifferential
OF (v) ={v" e V" 1 (v',v = V)yry < F(v) = F(v) forallv eV}
Fenchel conjugate (always convex)

F* Vv SR, Fr(v*) =sup (v, V)yy — F(v)

veV

“convex inverse function theorem” (if F lower semicontinuous)

viedF(v) & veIFT (V)

Nonsmooth optimization 71m



Fenchel duality: example

G:VoR, v vy

0 if|v¥y <1

G VSR, Vo S (V) = {
oo else

QZV%@, VH5{|I'\|VS1}(V):

0G(W) ={v' eV 1 (v',v =)oy <0 forall |vlly <1}

~» box-constrained optimization

Nonsmooth optimization



Fenchel duality: application

F(@) + (@) =min F(u) + G (u)

1 Fermat principle: 0 €3 (F (u) + G(u))
2 sumrule: 0 € dF (u) +9G(u),ie,thereis p € V* with
—p € 0F (u)
{ p € 36 (@)
3 Fenchel duality:

—p € dF (u)
ue€agi(p)



Regularization

G non-smooth ~» subdifferential 9G* set-valued ~» regularize
u, p € L?(Q) Hilbert space ~» consider fory > 0

Proximal mapping
o 1 2
Prox,g-(p) =argminG"(w) + Z”W - pll

single-valued, Lipschitz continuous
coincides with resolvent (Id +y3G*) " (p)

(also required for primal-dual first-order methods)

Nonsmooth optimization



Regularization

Proximal mapping
s 1 2
Prox,g-(p) =argminG*(w) + ZIIW = pll
Complementarity formulation of u € G (p)

u= ((p +yu) — prox,g-(p + YU))

<| =

equivalent for everyy > 0

single-valued, Lipschitz continuous, implicit

Nonsmooth optimization 10/ 451



Regularization

Proximal mapping

_ . % 1 2
Prox,g-(p) =argminG"(w) + Z”W - pll

Moreau-Yosida regularization of u € 3G*(p)

u == (p - prox,g-(p)) = 36; (p)

1
14
3G, =3 (G +5I-1%)" — ag"asy — 0 (no smoothing of GY)

single-valued, Lipschitz continuous, explicit
~» nonsmooth operator equation, Newton method

Nonsmooth optimization



Regularization: example

G V' SR pe Sy <n(p):
Proximal mapping:

pProx,g-(p) = Proj.y,. <13 (P)

Moreau-Yosida regularization (V* = L*(Q)):
1 .
3G, (p) = ;( max(0, p — 1)) + min(0, p + 1))

(max, min pointwise almost everywhere)

Nonsmooth optimization



Generalized Newton method

Consider Banach spaces X, Y, mapping F : X — Y

Newton-type method for F(x) =0

choose x° € X (close to solution x*)

fork =0,1,...
1 choose My € L(X,Y) invertible
2 solve for sk:
Mysk = —F(x¥)

k+1 k k

3 setx =X"+Ss

Nonsmooth optimization



Convergence of Newton method

Set gk = xk — x* ~»

I =l I (FOC +d%) = F(x) = Mied®)llx

[Ixk = x=[1x lld*llx

~» superlinear convergence if
1 regularity condition
Ml zvxy <C  forallk

2 approximation condition

i IFOC 409 = FOC) = Myl

-0
l|d¥ lx—0 lla¥|lx

Nonsmooth optimization



Semismooth Newton method

Goal: define Newton derivative My =: Dy F(x¥) such that
XK = xk — Dy F(xXF) TR (xH)
converges superlinearly for F(x) = 0 nonsmooth

R": F Lipschitz ~» DyF from Clarke subdifferential (Rademacher)
[Mifflin 1977, Kummer 1992, Qi/Sun 1993]

function space: Clarke subdifferential not explicit
~> define Dy F via approximation condition
[Chen/Nashed/Qi 2000, Hintermiiller/Ito/Kunisch 2002]

f : R — R semismooth ~» superposition operator
F:LP(Q) — L9(Q) semismooth for p > q
[Ulbrich 2002/03/11, Schiela 2008]

Nonsmooth optimization /@



Semismooth Newton method

f locally Lipschitz, piecewise C':
flv) =0, f:R" >R
Newton derivative

Dy f(v)év € ocf(v)év

Clarke generalized gradient: convex hull of piecewise derivatives

semismooth Newton method

Dy f(VEYSV = —F(v), v = vk 4+ 8y

converges locally superlinearly

Nonsmooth optimization



Semismooth Newton method

f locally Lipschitz, piecewise C':
Fluy=0, F:L"(Q) - L°(Q), [F(W](X)=f(ux))
Newton derivative

[DnF(u)éul(x) € acf(u(x))éu(x)

any measurable selection of Clarke generalized gradient

semismooth Newton method

DNF(u!)Su = —F(u"), Ut =k 4 Su

converges locally superlinearly if r > s

Nonsmooth optimization



Semismooth functions: example

f:R—>R, t max(0,t)

{0} t<oO
Dnf(t) €acf(t)=1{1} t>0
[0,1] t=0

F:LP(Q) - L9(Q), u(x)— max(0,u(x)), p>q

_]o u(x) <0
[DF(u)h] (x) = {h 0 w0020

~» Moreau-Yosida regularization semismooth

Nonsmooth optimization



Numerical solution: summary

For (non)convex G : L?(Q) —» R, G(u) = ﬂ) g(u(x)) dx,

Approach: pointwise

1

2

compute subdifferential dg (or Fenchel conjugate g*)
compute subdifferential ag*

compute proximal mapping prox, g

compute Moreau-Yosida regularization ag;

compute Newton derivative DNag;j

semismooth Newton method, continuation in y for

superposition operator  [dG, (p)](x) =g, (p(x))

Nonsmooth optimization



3 Multi-bang penalty

Multi-bang penalty 18/



Formulation

1
min -

Ty
Jmin Sl =2l + a6

s.t. Ay =u, uq <u(x)<ugqga.e.

up < ---<ug given parameter values (d > 2)
z € L?(Q) target (or noisy data)

A :V — V* isomorphism for Hilbert space V < [%(Q) < V*
(e.g., elliptic differential operator with boundary conditions)

~ F(u) = 3|A7"u — 2]|?, smooth

G multi-bang penalty (will include control constraints from now)

Multi-bang penalty



Multi-bang penalty

= . 2 (Ui + UiV = Ujljsr) V€ [Uj, Ui ]
00 else

piecewise differentiable ~» subdifferential convex hull of derivatives

(=00, 3 (ur + u2)] v =

{3 (i +uin)} ve (uuip) 1=5i<d
9g(v) =4 7 1 ,

[3 Ui +up), Sui+uiw)] v=u; 1<i<d

[2(ug—1 +ug), ) v =ug

Multi-bang penalty



Multi-bang penalty

(o0, 3(ur +u2)] v =u

{3(ui +ui)} ve(u,uipr) 1<i<d
g (v) = ] : .

[5(“/—1 +Ui),§(U/+U/+1)] vV =Uuj 1<i<d

[ (Ud-1 + uq), ) V =uy

convex inverse function theorem:

{uq} g € (-0, 2(ur +u2))
297 (q) € [ui, Uil g =3(ui +ujsr), 1<i<d
{ui} g€ (s +up), 3(Ui+ui)) 1<i<d,

{uq} g € (3(Ug—1 + ug), )

Multi-bang penalty



Multi-bang penalty: sketch

Uy uz us

(@) g =0,u2 =1,u3=2)

Multi-bang penalty

v

uq uz us

(b)ag (u1 =0,u; =1,u3 =2)

v



Multi-bang penalty: sketch

3%

21
21

11
11

0
0

uq uz us

()dg (U1 =0,ux =1,u3 =2)

Multi-bang penalty

0.5 1.5 q
(d)ag* (ur =0,u; =1,uzs =2)



Optimality system

p=15*(z-Su)

_ {ui} PLx) € Qi
5 _ =
ue€ag(p) {[u;,um] p(x) € Q; N Qi

S : u +— y control-to-state mapping, S* adjoint

~> unique solution (o, p) € L2(Q) x L?(Q)

singulararc S ={x:u(x) ¢ {u;j}} c {x: p(x) = 1z(u,- +Ujs1)}
for suitable A, p(x) constant implies [A*p](x) = [z - y](x) =0

~ {x:yx)=z(x)}| =0 = u € {uy,...uq} a.e, true multi-bang

Multi-bang penalty



Moreau-Yosida regularization

Proximal mapping  prox,.-(q) =w iff g € {w} +ydg*(w)

case-wise inspection of subdifferential:

uj qeQ!

Y

3g9,(q) =
; % (- 3Wi+um)) geQl,,

(q - proxyg*(q)) = {

<=

Qly = (%(U,‘_1 + U,‘) + yuj, %(Ui + ui+1) + VUi)

Qi = [%(Ui +Ujs1) + YU, 3(Uj + Ujgr) + VUi+1]

Multi-bang penalty



Regularized optimality system

{py =15*(z - Suy)
uy :ag;(py)

optimality conditions for F(u) + a G(u) + %||u||2

~> unique solution (uy, py)

(uy, py) = (u,p)asy — 0

dg, Lipschitz continuous, piecewise C', normgapV < L?(Q)

~> semismooth Newton method

Multi-bang penalty



Regularized optimality system

{A*Py = %(Z - ¥y)
Ayy =G, (py)

optimality conditions for ¥ (u) + a G (u) + %|lul|?

~> unique solution (uy, py)

(uy py) = (@, p) asy — 0

dg, Lipschitz continuous, piecewise C',normgapV <= L?(Q)

~» semismooth Newton method

introduce y, = Suy, eliminate u, = G, (py)

Multi-bang penalty



Semismooth Newton method

(%Id A* )(6y)__(A*p+%(y—z))
A -DnGy(p))\&p)  \ Ay-G;(p)

v6 v
[DNQ;(p)ép] (x) = {é p(x) plx) € Q/,/+1

else
symmetric, but: local convergence
~> continuationiny — 0

~» backtracking line search based on residual norm

only number of sets Q,’.' depends on d ~» linear complexity

Multi-bang penalty



Numerical example

Q=1[0,1]?>, A=-A

finite element discretization: uniform grid, 256 X 256 nodes
state, adjoint: piecewise linear

parameter: eliminated (variational discretization)
d=5, (uq,...,us)=(-2,1,0,1,2)

y = 0: regularized active sets empty, true multi-bang

y > 0: terminated with 2-21 nodes in regularized active sets

Multi-bang penalty



Numerical examples: desired state

Multi-bang penalty 27/t



Multi-bang controls

(a)a=5-10"3(y =0)

| akEbnL
T

04 e S 08
02 T

% 0 o

(b) o =1073 (y = 1077)

Multi-bang penalty
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Parameters: effect of d

(@)d=5(y=0)

Multi-bang penalty 29/



Parameters: effect of d

(b)d =15 (y = 0)

Multi-bang penalty 29/



Parameters: effect of d

(c)d =101 (y = 107%)

Multi-bang penalty 29/



Parameters: effect of d

(d)d =1001 (y ~ 10~

Multi-bang penalty 29/



4 Vector-valued multi-bang penalty

Vector-valued multi-bang penalty 30/



Vector-valued multi-bang control

Discrete vector-valued controlsu : Q — U c R™

Example: optimal control of Bloch equation: Q = [0,T], m =2

d
M) =M@ xB(©),  M(0) = Mo
M(t) € R3 describes temporal evolution of spin ensemble
B(t) = (uq1(t),uz(t), w)" controlled time-dependent magnetic field
w resonance frequency (material parameter)
applications in magnetic resonance imaging, spectroscopy

control-to-state mapping S : u — M bilinear (~ chain rule, Clarke)

Vector-valued multi-bang penalty



Vector-valued multi-bang: penalty

Here: admissible control set U of d radially distributed states, origin
0 6
u={(8), (Unce=r),.... (“nose)}

fixed amplitude wg >0
phases 0<61<...<0y<2m

multi-bang penalty g = (3] - |2+ 8y)"" convex envelope

g'@ = ((31-B+6)") @=(31-B+6) (@

:{0 (q,u )Szwoforall1</<d

(q,u;) - %wé 0i-1+6; 1+9: </q< 9:+9:+1 A, u) > S

Vector-valued multi-bang penalty



Vector-valued multi-bang: subdifferential

Fenchel conjugate

g'(q) =101 9 € Q
(q.uj) — Jw? qeQ

Subdifferential

{u;} q € Q; 0<i<d

co{uj,...,ui} q€Qi.i 0<iy....ik<d

3g9*(q) :{

Vector-valued multi-bang penalty



Vector-valued multi-bang: subdifferential

Subdifferential

{ui} qeqQ; 0<i<d

co{Uj,...,Uj} q€Qi. i, 0<iy...,ix<d

99" (q) = {

Moreau-Yosida regularization

y
uj q € Q,’
u
((q i) 2)“1 qeogi
* ng 4 ,
(997)y(q) =
4 UitUi1 + (q,Ui=Ui+1 ) (Ui=Ui+1) qge Q
2 ylui 2Ul+1 |2 ii+1
q9_a Wo . ;
y v (|Ui+Ui+1|2) (Uit ui) g€ QO,i,i+1'



Vector-valued multi-bang: subdifferential

qz /
Q2 Q12
N [ Q
Q23 0 _Qo12
Qozs™ Qo1_ o
Q3 ! Qos1”
Qo3 Q I
! 0 Qoe Q gi
/0034\ i 6
/Q34 Qo4 0 _Qose
Quas” Qse
Qs AN
Qa5 Qs

(a) subdomains for 9g* (b) subdomains for (ag*),

Vector-valued multi-bang penalty 33/



Vector-valued multi-bang: examples

goal: shift magnetization from Mg = (0,0,1)" att =0
toMy=(1,0,0) att =T

d = 3, 6 radially distributed admissible control states

n =1, 4 isochromats with different resonance frequencies

1 shift all isochromats

N

shift only one isochromat

a

107", wo =1
example motivated by [Dridi/Lapert/Salomon/Glaser/Sugny "15]
matrix-free Krylov method for semismooth Newton step

discretization, adjoint from [Aigner/Clason/Rund/Stollberger "16]

Vector-valued multi-bang penalty



Vector-valued multi-bang: examples

(a) control u(t) (b) state M(t)

Figure: n = 1 isochromat, d = 3 control states

Vector-valued multi-bang penalty 35/



Vector-valued multi-bang: examples

(a) control u(t) (b) state M(t)

Figure: n = 1 isochromat, d = 6 control states

Vector-valued multi-bang penalty 35/



Vector-valued multi-bang: examples

(a) control u(t) (b) state M(t)

Figure: n = 4 isochromats, same target

Vector-valued multi-bang penalty 35/



Vector-valued multi-bang: examples

(a) control u(t) (b) state M(t)

Figure: / = 4 isochromats, different targets

Vector-valued multi-bang penalty 35/



Vector-valued multi-bang: elasticity

Linear elasticity: S : u + y solving

—2udive(y) —Agraddivy =u inQ,
y=0 onT,
(2ue(y) +Adivy)n=0 ondQ\T

Concentric admissible set (without origin!)

o= {01 () C)-6G)(2)- G

Vector-valued multi-bang penalty



Vector-valued multi-bang: elasticity

92
Qo1
|
Qoo
Qi /l\ Qi1
Q710 Qo7 Quio
/ Q7 | Quit \
- Q701 — Q700 — Q707 — 001 — 2107 —Q100— Q101 7
N % | Qi
Q710 Qo1 Qo
Q714 \ | / QT
Qo7o
I
Qo7
I

(a) subdomains for ag*

~02
e
010
é \ ;\\ Qs
110 QWV10
y
‘// Tﬁ ‘ Q111 \Xf
'\0 100 10'\ 001 101 Q100 101>
Jx\ Ui | o /L
Q'
110\‘ 0‘”‘/ mo
y ¥
QTT1 Q' 011’1
010
Q(')ﬁ

(b) subdomains for (ag™*),

Vector-valued multi-bang penalty
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Vector-valued multi-bang: elasticity

Figure: radial, d = 3, & = 1073 (grey: prescribed, red: achieved deformation)




Vector-valued multi-bang: elasticity

Figure: radial, d = 5, & = 1073 (grey: prescribed, red: achieved deformation)




Vector-valued multi-bang: elasticity

Figure: concentric, a = 1073 (grey: prescribed, red: achieved deformation)




Vector-valued multi-bang: elasticity

R
“‘L“ _r iigk“‘;'
IR

XA

Figure: concentric, a = 107° (grey: prescribed, red: achieved deformation)




Vector-valued multi-bang: elasticity

Figure: concentric, & = 107 (grey: prescribed, red: achieved deformation)



Vector-valued multi-bang: elasticity

7' 7 NN / N
// NS 4 \\ e
\\ N \\ N A
N . N . NN L, /
N // N 2 N |/
N Ny T/ \\ e
N 7N A NS /N
L a% \\ 7N 7

Figure: concentric, & = 107 (grey: prescribed, red: achieved deformation)

Vector-valued multi-bang penalty 38/



Vector-valued multi-bang: multimaterial transport

Multimaterial transport on graph (V, E): S graph divergence

Su(x) = Z u(e) - Z u(e)

ecEtox ecE from x

~» tracking term penalizes material loss

U= {u e R™ |u,~ € {0,m;} oru; € {0,—-m;} fori = 1,...,m}
~> transport of all masses m;(= 1) in same direction (same sign)

Here: multibang penalty ~ transport costs

g(u) =lulz + 6y

Vector-valued multi-bang penalty



Vector-valued multi-bang: multimaterial transport

Here: multibang penalty =~ transport costs

g(u) =lulz + 6y

~» algorithmic computation of proximal mapping:

1 enumerate all faces of
epig” ={(g,t) € R™" 1t > (u;,q) — aluj|, for i € I}

(linear program, precompute!)
2 for each face, precompute linear system for (Id +ydg*)~"

3 for given g, evaluate linear system for each face and pick correct face
(inequalities)

Vector-valued multi-bang penalty



Vector-valued multi-bang: multimaterial transport

—ms3 +ms3

+my +my

+ms
+m; +my

Vector-valued multi-bang penalty 40/t



Vector-valued multi-bang: multimaterial transport

-m5 M2

+my +my
+ms3 +ms3
+m; +my

Vector-valued multi-bang penalty
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Vector-valued multi-bang: multimaterial transport

+m M

+ms3 +ms3
+m»y +My +m>y

Vector-valued multi-bang penalty
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Conclusion

Discrete controls:
can be promoted by convex penalty
linear complexity in number of parameter values
~> efficient numerical solution (superlinear convergence)

applicable to vector-valued problems

Outlook:

nonlinear inverse problems: seismic imaging

combination with total variation regularization

conditional gradient methods?

other discrete-continuous problems: switching, state diagrams
Papers, Code: https://imsc.uni-grat.at/clason/publications

SIREV paper: https://arxiv.org/abs/2108.10077
Textbook: https://arxiv.org/abs/2001.00216

Vector-valued multi-bang penalty wlm
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