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Motivation: hybrid discrete optimization

min
𝑢∈𝑈

F (𝑢) + 𝛼

2
∥𝑢∥2

F tracking, discrepancy term (involving PDEs)

𝑈 discrete set

𝑈 =
{
𝑢 ∈ 𝐿𝑝(Ω) : 𝑢(𝑥) ∈ {𝑢1, . . . , 𝑢𝑑} a.e.

}
𝑢1, . . . , 𝑢𝑑 given voltages, velocities, materials, . . .
(assumed here: ranking by magnitude possible!)

motivation: topology optimization, medical imaging
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Motivation: penalty

convex relaxation: replace 𝑈 by convex hull 𝑢(𝑥) ∈ [𝑢1, 𝑢𝑑]

works only for 𝑑 = 2, cf. bang-bang control (𝛼 = 0)

{ promote 𝑢(𝑥) ∈ {𝑢1, . . . , 𝑢𝑑} by convex pointwise penalty

G(𝑢) =
∫
Ω
𝑔(𝑢(𝑥)) 𝑑𝑥

generalize 𝐿1 norm: polyhedral epigraph with vertices 𝑢1, . . . , 𝑢𝑑

not exact relaxation/penalization (in general)!
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Motivation: penalty

generalize 𝐿1 norm: polyhedral epigraph with vertices 𝑢1, . . . , 𝑢𝑑

0

1

2

3

𝑢1 𝑢2 𝑢3 𝑣

motivation: convex envelope of
1
2𝑢

2 + 𝛿𝑈

multi-bang (generalized
bang-bang) control

{ non-smooth optimization in
function spaces

Overview Nonsmooth optimization Multi-bang penalty Vector-valued multi-bang penalty 3 / 41



1 Overview

2 Approach
Convex analysis
Moreau–Yosida regularization
Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty
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Convex analysis: motivation

𝑓 : ℝ → ℝ differentiable:

derivative:

𝑓 ′ (𝑢) = lim
ℎ→0

𝑓 (𝑢 + ℎ) − 𝑓 (𝑢)
ℎ

geometrically:
𝑓 ′ (𝑢) tangent slope

𝑓 (𝑢̄) = min𝑢 𝑓 (𝑢) ⇒ 𝑓 ′ (𝑢̄) = 0

calculus for 𝑓 ′

𝑢

𝑓 (𝑢)

𝑓 (𝑢̄) + ⟨ 𝑓 ′ (𝑢̄), 𝑢⟩𝑢̄
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Convex relaxation: motivation

𝑓 : ℝ → ℝ not differentiable, convex:

directional derivative:

𝑓 ′ (𝑢;ℎ) = lim
𝑡→0+

𝑓 (𝑢 + 𝑡ℎ) − 𝑓 (𝑢)
𝑡

but: for all ℎ,

𝑓 ′ (𝑢̄;ℎ) ≠ 0

𝑓 (𝑢)
𝑓 (𝑢̄) + ⟨ 𝑓 ′ (𝑢̄; 1), 𝑢⟩

𝑓 (𝑢̄) + ⟨ 𝑓 ′ (𝑢̄;−1), 𝑢⟩

𝑢

𝑢̄
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Convex relaxation: motivation

𝑓 : ℝ → ℝ not differentiable, convex:

subdifferential:

𝜕 𝑓 (𝑢) = {𝑢∗ : ⟨𝑢∗, ℎ⟩ ≤ 𝑓 ′ (𝑢;ℎ)}

geometrically: 𝜕 𝑓 (𝑢) set of
tangent slopes

𝑓 (𝑢̄) = min𝑢 𝑓 (𝑢) ⇒ 0 ∈ 𝜕 𝑓 (𝑢̄)

calculus for 𝜕 𝑓 under regularity
conditions

𝜕 𝑓 (𝑢̄)

𝑓 (𝑢̄) + ⟨0, 𝑢⟩

𝑓 (𝑢)

𝑢

𝑢̄
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Fenchel duality

F : 𝑉 → ℝ := ℝ ∪ {+∞} convex, 𝑉 Banach space, 𝑉∗ dual space

subdifferential

𝜕F (𝑣) =
{
𝑣∗ ∈ 𝑉∗ : ⟨𝑣∗, 𝑣 − 𝑣⟩𝑉∗,𝑉 ≤ F (𝑣) − F (𝑣) for all 𝑣 ∈ 𝑉

}
Fenchel conjugate (always convex)

F ∗ : 𝑉∗ → ℝ, F ∗(𝑣∗) = sup
𝑣∈𝑉

⟨𝑣∗, 𝑣⟩𝑉∗,𝑉 − F (𝑣)

“convex inverse function theorem” (if F lower semicontinuous)

𝑣∗ ∈ 𝜕F (𝑣) ⇔ 𝑣 ∈ 𝜕F ∗(𝑣∗)
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Fenchel duality: example

G : 𝑉 → ℝ, 𝑣 ↦→ ∥𝑣∥𝑉 :

G∗ : 𝑉∗ → ℝ, 𝑣∗ ↦→ 𝛿{ ∥ · ∥𝑉∗ ≤1} (𝑣∗) :=

{
0 if ∥𝑣∗∥𝑉∗ ≤ 1
∞ else

G : 𝑉 → ℝ, 𝑣 ↦→ 𝛿{ ∥ · ∥𝑉≤1} (𝑣):

𝜕G(𝑣) =
{
𝑣∗ ∈ 𝑉∗ : ⟨𝑣∗, 𝑣 − 𝑣⟩𝑉∗,𝑉 ≤ 0 for all ∥𝑣∥𝑉 ≤ 1

}
{ box-constrained optimization
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Fenchel duality: application

F (𝑢̄) + G(𝑢̄) =min
𝑢

F (𝑢) + G(𝑢)

1 Fermat principle: 0 ∈ 𝜕 (F (𝑢̄) + G(𝑢̄))

2 sum rule: 0 ∈ 𝜕F (𝑢̄) + 𝜕G(𝑢̄), i.e., there is 𝑝̄ ∈ 𝑉∗ with{
−𝑝̄ ∈ 𝜕F (𝑢̄)
𝑝̄ ∈ 𝜕G(𝑢̄)

3 Fenchel duality: {
−𝑝̄ ∈ 𝜕F (𝑢̄)
𝑢̄ ∈ 𝜕G∗(𝑝̄)

Overview Nonsmooth optimization Multi-bang penalty Vector-valued multi-bang penalty 9 / 41



Regularization

G non-smooth{ subdifferential 𝜕G∗ set-valued{ regularize

𝑢, 𝑝 ∈ 𝐿2(Ω) Hilbert space{ consider for 𝛾 > 0

Proximal mapping

prox𝛾G∗ (𝑝) = arg min
𝑤

G∗(𝑤) + 1
2𝛾

∥𝑤 − 𝑝∥2

single-valued, Lipschitz continuous

coincides with resolvent (Id+𝛾𝜕G∗)−1(𝑝)

(also required for primal-dual first-order methods)

Overview Nonsmooth optimization Multi-bang penalty Vector-valued multi-bang penalty 10 / 41



Regularization

Proximal mapping

prox𝛾G∗ (𝑝) = arg min
𝑤

G∗(𝑤) + 1
2𝛾

∥𝑤 − 𝑝∥2

Complementarity formulation of 𝑢 ∈ 𝜕G∗(𝑝)

𝑢 =
1
𝛾

(
(𝑝 + 𝛾𝑢) − prox𝛾G∗ (𝑝 + 𝛾𝑢)

)
equivalent for every 𝛾 > 0

single-valued, Lipschitz continuous, implicit
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Regularization

Proximal mapping

prox𝛾G∗ (𝑝) = arg min
𝑤

G∗(𝑤) + 1
2𝛾

∥𝑤 − 𝑝∥2

Moreau–Yosida regularization of 𝑢 ∈ 𝜕G∗(𝑝)

𝑢 =
1
𝛾

(
𝑝 − prox𝛾G∗ (𝑝)

)
=: 𝜕G∗

𝛾 (𝑝)

𝜕G∗
𝛾 = 𝜕

(
G + 𝛾

2 ∥ · ∥
2)∗ → 𝜕G∗ as 𝛾 → 0 (no smoothing of G!)

single-valued, Lipschitz continuous, explicit
{ nonsmooth operator equation, Newton method
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Regularization: example

G∗ : 𝑉∗ → ℝ, 𝑝 ↦→ 𝛿{ ∥ · ∥𝑉∗ ≤1} (𝑝):

Proximal mapping:

prox𝛾G∗ (𝑝) = proj{ ∥ · ∥𝑉∗ ≤1} (𝑝)

Moreau–Yosida regularization (𝑉∗ = 𝐿∞(Ω)):

𝜕G∗
𝛾 (𝑝) =

1
𝛾

(
max(0, 𝑝 − 1)) + min(0, 𝑝 + 1)

)
(max, min pointwise almost everywhere)
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Generalized Newton method

Consider Banach spaces 𝑋,𝑌, mapping 𝐹 : 𝑋 → 𝑌

Newton-type method for 𝐹 (𝑥) = 0

choose 𝑥0 ∈ 𝑋 (close to solution 𝑥∗)

for 𝑘 = 0, 1, . . .
1 choose 𝑀𝑘 ∈ L(𝑋,𝑌) invertible
2 solve for 𝑠𝑘:

𝑀𝑘𝑠
𝑘 = −𝐹 (𝑥𝑘)

3 set 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘
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Convergence of Newton method

Set 𝑑𝑘 = 𝑥𝑘 − 𝑥∗ {

∥𝑥𝑘+1 − 𝑥∗∥𝑋
∥𝑥𝑘 − 𝑥∗∥𝑋

=
∥𝑀−1

𝑘 (𝐹 (𝑥∗ + 𝑑𝑘) − 𝐹 (𝑥∗) −𝑀𝑘𝑑
𝑘)∥𝑋

∥𝑑𝑘∥𝑋

{ superlinear convergence if

1 regularity condition

∥𝑀−1
𝑘 ∥L(𝑌,𝑋) ≤ 𝐶 for all 𝑘

2 approximation condition

lim
∥𝑑𝑘 ∥𝑋→0

∥𝐹 (𝑥∗ + 𝑑𝑘) − 𝐹 (𝑥∗) −𝑀𝑘𝑑
𝑘∥𝑌

∥𝑑𝑘∥𝑋
= 0
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Semismooth Newton method

Goal: define Newton derivative 𝑀𝑘 =: 𝐷𝑁𝐹 (𝑥𝑘) such that

𝑥𝑘+1 = 𝑥𝑘 − 𝐷𝑁𝐹 (𝑥𝑘)−1𝐹 (𝑥𝑘)

converges superlinearly for 𝐹 (𝑥) = 0 nonsmooth

ℝ𝑛: 𝐹 Lipschitz{ 𝐷𝑁𝐹 from Clarke subdifferential (Rademacher)
[Mifflin 1977, Kummer 1992, Qi/Sun 1993]

function space: Clarke subdifferential not explicit
{ define 𝐷𝑁𝐹 via approximation condition
[Chen/Nashed/Qi 2000, Hintermüller/Ito/Kunisch 2002]

𝑓 : ℝ → ℝ semismooth{ superposition operator
𝐹 : 𝐿𝑝(Ω) → 𝐿𝑞(Ω) semismooth for 𝑝 > 𝑞

[Ulbrich 2002/03/11, Schiela 2008]
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Semismooth Newton method

𝑓 locally Lipschitz, piecewise 𝐶1:

𝑓 (𝑣) = 0, 𝑓 : ℝ𝑛 → ℝ

Newton derivative

𝐷𝑁 𝑓 (𝑣)𝛿𝑣 ∈ 𝜕𝐶 𝑓 (𝑣)𝛿𝑣

Clarke generalized gradient: convex hull of piecewise derivatives

semismooth Newton method

𝐷𝑁 𝑓 (𝑣𝑘)𝛿𝑣 = − 𝑓 (𝑣𝑘), 𝑣𝑘+1 = 𝑣𝑘 + 𝛿𝑣

converges locally superlinearly
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Semismooth Newton method

𝑓 locally Lipschitz, piecewise 𝐶1:

𝐹 (𝑢) = 0, 𝐹 : 𝐿𝑟 (Ω) → 𝐿𝑠(Ω), [𝐹 (𝑢)] (𝑥) = 𝑓 (𝑢(𝑥))

Newton derivative

[𝐷𝑁𝐹 (𝑢)𝛿𝑢] (𝑥) ∈ 𝜕𝐶 𝑓 (𝑢(𝑥))𝛿𝑢(𝑥)

any measurable selection of Clarke generalized gradient

semismooth Newton method

𝐷𝑁𝐹 (𝑢𝑘)𝛿𝑢 = −𝐹 (𝑢𝑘), 𝑢𝑘+1 = 𝑢𝑘 + 𝛿𝑢

converges locally superlinearly if 𝑟 > 𝑠
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Semismooth functions: example

𝑓 : ℝ → ℝ, 𝑡 ↦→ max(0, 𝑡)

𝐷𝑁 𝑓 (𝑡) ∈ 𝜕𝐶 𝑓 (𝑡) =


{0} 𝑡 < 0
{1} 𝑡 > 0
[0, 1] 𝑡 = 0

𝐹 : 𝐿𝑝(Ω) → 𝐿𝑞(Ω), 𝑢(𝑥) ↦→ max(0, 𝑢(𝑥)), 𝑝 > 𝑞

[𝐷𝑁𝐹 (𝑢)ℎ] (𝑥) =
{

0 𝑢(𝑥) < 0
ℎ(𝑥) 𝑢(𝑥) ≥ 0

{ Moreau–Yosida regularization semismooth
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Numerical solution: summary

For (non)convex G : 𝐿2(Ω) → ℝ, G(𝑢) =
∫
Ω
𝑔(𝑢(𝑥)) 𝑑𝑥,

Approach: pointwise

1 compute subdifferential 𝜕𝑔 (or Fenchel conjugate 𝑔∗)

2 compute subdifferential 𝜕𝑔∗

3 compute proximal mapping prox𝛾𝑔∗

4 compute Moreau–Yosida regularization 𝜕𝑔∗
𝛾

5 compute Newton derivative 𝐷𝑁𝜕𝑔
∗
𝛾

{ semismooth Newton method, continuation in 𝛾 for

superposition operator [𝜕G∗
𝛾 (𝑝)] (𝑥) = 𝜕𝑔∗

𝛾 (𝑝(𝑥))
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1 Overview

2 Approach
Convex analysis
Moreau–Yosida regularization
Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty
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Formulation


min

𝑢∈𝐿2 (Ω)

1
2
∥ 𝑦 − 𝑧∥2

𝐿2 + 𝛼 G(𝑢)

s. t. 𝐴𝑦 = 𝑢, 𝑢1 ≤ 𝑢(𝑥) ≤ 𝑢𝑑 a.e.

𝑢1 < · · · < 𝑢𝑑 given parameter values (𝑑 > 2)

𝑧 ∈ 𝐿2(Ω) target (or noisy data)

𝐴 : 𝑉 → 𝑉∗ isomorphism for Hilbert space 𝑉 ↩→ 𝐿2(Ω) ↩→ 𝑉∗

(e.g., elliptic differential operator with boundary conditions)

{ F (𝑢) = 1
2 ∥𝐴

−1𝑢 − 𝑧∥2
𝐿2 smooth

G multi-bang penalty (will include control constraints from now)
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Multi-bang penalty

𝑔 : ℝ → ℝ, 𝑣 ↦→
{

1
2 ((𝑢𝑖 + 𝑢𝑖+1)𝑣 − 𝑢𝑖𝑢𝑖+1) 𝑣 ∈ [𝑢𝑖 , 𝑢𝑖+1]
∞ else

piecewise differentiable{ subdifferential convex hull of derivatives

𝜕𝑔(𝑣) =



(
−∞, 1

2 (𝑢1 + 𝑢2)
]

𝑣 = 𝑢1{ 1
2 (𝑢𝑖 + 𝑢𝑖+1)

}
𝑣 ∈ (𝑢𝑖 , 𝑢𝑖+1) 1 ≤ 𝑖 < 𝑑[ 1

2 (𝑢𝑖−1 + 𝑢𝑖), 1
2 (𝑢𝑖 + 𝑢𝑖+1)

]
𝑣 = 𝑢𝑖 1 < 𝑖 < 𝑑[ 1

2 (𝑢𝑑−1 + 𝑢𝑑),∞
)

𝑣 = 𝑢𝑑
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Multi-bang penalty

𝜕𝑔(𝑣) =



(
−∞, 1

2 (𝑢1 + 𝑢2)
]

𝑣 = 𝑢1{ 1
2 (𝑢𝑖 + 𝑢𝑖+1)

}
𝑣 ∈ (𝑢𝑖 , 𝑢𝑖+1) 1 ≤ 𝑖 < 𝑑[ 1

2 (𝑢𝑖−1 + 𝑢𝑖), 1
2 (𝑢𝑖 + 𝑢𝑖+1)

]
𝑣 = 𝑢𝑖 1 < 𝑖 < 𝑑[ 1

2 (𝑢𝑑−1 + 𝑢𝑑),∞
)

𝑣 = 𝑢𝑑

convex inverse function theorem:

𝜕𝑔∗(𝑞) ∈


{𝑢1} 𝑞 ∈

(
−∞, 1

2 (𝑢1 + 𝑢2)
)

[𝑢𝑖 , 𝑢𝑖+1] 𝑞 = 1
2 (𝑢𝑖 + 𝑢𝑖+1), 1 ≤ 𝑖 < 𝑑

{𝑢𝑖} 𝑞 ∈
( 1

2 (𝑢𝑖−1 + 𝑢𝑖), 1
2 (𝑢𝑖 + 𝑢𝑖+1)

)
1 < 𝑖 < 𝑑,

{𝑢𝑑} 𝑞 ∈
( 1

2 (𝑢𝑑−1 + 𝑢𝑑),∞
)
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Multi-bang penalty: sketch

0

1

2

3

𝑢1 𝑢2 𝑢3 𝑣

(a) 𝑔 (𝑢1 = 0, 𝑢2 = 1, 𝑢3 = 2)

0

1

2

3

𝑢1 𝑢2 𝑢3 𝑣

(b) 𝜕𝑔 (𝑢1 = 0, 𝑢2 = 1, 𝑢3 = 2)
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Multi-bang penalty: sketch

0

1

2

3

𝑢1 𝑢2 𝑢3 𝑣

(c) 𝜕𝑔 (𝑢1 = 0, 𝑢2 = 1, 𝑢3 = 2)

0

1

2

0.5 1.5 𝑞

(d) 𝜕𝑔∗ (𝑢1 = 0, 𝑢2 = 1, 𝑢3 = 2)
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Optimality system

𝑝̄ = 1
𝛼𝑆

∗(𝑧 − 𝑆𝑢̄)

𝑢̄ ∈ 𝜕G∗(𝑝̄) =
{
{𝑢𝑖} 𝑝̄(𝑥) ∈ 𝑄𝑖

[𝑢𝑖 , 𝑢𝑖+1] 𝑝̄(𝑥) ∈ 𝑄𝑖 ∩𝑄𝑖+1

𝑆 : 𝑢 ↦→ 𝑦 control-to-state mapping, 𝑆∗ adjoint

{ unique solution (𝑢̄, 𝑝̄) ∈ 𝐿2(Ω) × 𝐿2(Ω)

singular arc S = {𝑥 : 𝑢̄(𝑥) ∉ {𝑢𝑖}} ⊂ {𝑥 : 𝑝̄(𝑥) = 1
2 (𝑢𝑖 + 𝑢𝑖+1)}

for suitable 𝐴, 𝑝̄(𝑥) constant implies [𝐴∗ 𝑝̄] (𝑥) = [𝑧 − 𝑦] (𝑥) = 0

{ |{𝑥 : 𝑦(𝑥) = 𝑧(𝑥)}| = 0 ⇒ 𝑢̄ ∈ {𝑢1, . . . 𝑢𝑑} a. e., true multi-bang
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Moreau–Yosida regularization

Proximal mapping prox𝛾𝑔∗ (𝑞) = 𝑤 iff 𝑞 ∈ {𝑤} + 𝛾𝜕𝑔∗(𝑤)

case-wise inspection of subdifferential:

𝜕𝑔∗
𝛾 (𝑞) =

1
𝛾

(
𝑞 − prox𝛾𝑔∗ (𝑞)

)
=

{
𝑢𝑖 𝑞 ∈ 𝑄

𝛾
𝑖

1
𝛾

(
𝑞 − 1

2 (𝑢𝑖 + 𝑢𝑖+1)
)

𝑞 ∈ 𝑄
𝛾
𝑖,𝑖+1

𝑄
𝛾
𝑖 =

(
1
2 (𝑢𝑖−1 + 𝑢𝑖) + 𝛾𝑢𝑖 ,

1
2 (𝑢𝑖 + 𝑢𝑖+1) + 𝛾𝑢𝑖

)
𝑄
𝛾
𝑖,𝑖+1 =

[
1
2 (𝑢𝑖 + 𝑢𝑖+1) + 𝛾𝑢𝑖 ,

1
2 (𝑢𝑖 + 𝑢𝑖+1) + 𝛾𝑢𝑖+1

]
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Regularized optimality system

{
𝑝𝛾 =

1
𝛼𝑆

∗(𝑧 − 𝑆𝑢𝛾)
𝑢𝛾 = 𝜕G∗

𝛾 (𝑝𝛾)

optimality conditions for F (𝑢) + 𝛼 G(𝑢) + 𝛾
2 ∥𝑢∥

2

{ unique solution (𝑢𝛾 , 𝑝𝛾)

(𝑢𝛾 , 𝑝𝛾) ⇀ (𝑢̄, 𝑝̄) as 𝛾 → 0

𝜕𝑔∗
𝛾 Lipschitz continuous, piecewise 𝐶1, norm gap 𝑉 ↩→ 𝐿2(Ω)

{ semismooth Newton method
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Regularized optimality system

{
𝐴∗𝑝𝛾 =

1
𝛼 (𝑧 − 𝑦𝛾)

𝐴𝑦𝛾 = G∗
𝛾 (𝑝𝛾)

optimality conditions for F (𝑢) + 𝛼 G(𝑢) + 𝛾
2 ∥𝑢∥

2

{ unique solution (𝑢𝛾 , 𝑝𝛾)

(𝑢𝛾 , 𝑝𝛾) ⇀ (𝑢̄, 𝑝̄) as 𝛾 → 0

𝜕𝑔∗
𝛾 Lipschitz continuous, piecewise 𝐶1, norm gap 𝑉 ↩→ 𝐿2(Ω)

{ semismooth Newton method

introduce 𝑦𝛾 = 𝑆𝑢𝛾 , eliminate 𝑢𝛾 = G∗
𝛾 (𝑝𝛾)
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Semismooth Newton method

( 1
𝛼 Id 𝐴∗

𝐴 −𝐷𝑁G∗
𝛾 (𝑝)

) (
𝛿𝑦

𝛿𝑝

)
= −

(
𝐴∗𝑝 + 1

𝛼 ( 𝑦 − 𝑧)
𝐴𝑦 − G∗

𝛾 (𝑝)

)

[𝐷𝑁G∗
𝛾 (𝑝)𝛿𝑝] (𝑥) =

{
1
𝛾𝛿𝑝(𝑥) 𝑝(𝑥) ∈ 𝑄

𝛾
𝑖,𝑖+1

0 else

symmetric, but: local convergence

{ continuation in 𝛾 → 0

{ backtracking line search based on residual norm

only number of sets 𝑄𝛾
𝑖 depends on 𝑑{ linear complexity
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Numerical example

Ω = [0, 1]2, 𝐴 = −Δ

finite element discretization: uniform grid, 256 × 256 nodes

state, adjoint: piecewise linear

parameter: eliminated (variational discretization)

𝑑 = 5, (𝑢1, . . . , 𝑢5) = (−2, 1, 0, 1, 2)

𝛾 = 0: regularized active sets empty, true multi-bang

𝛾 > 0: terminated with 2–21 nodes in regularized active sets
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Numerical examples: desired state
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Multi-bang controls

(a) 𝛼 = 5 · 10−3 (𝛾 = 0) (b) 𝛼 = 10−3 (𝛾 ≈ 10−7)
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Parameters: effect of 𝑑

(a) 𝑑 = 5 (𝛾 = 0)
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Parameters: effect of 𝑑

(b) 𝑑 = 15 (𝛾 = 0)
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Parameters: effect of 𝑑

(c) 𝑑 = 101 (𝛾 ≈ 10−9)
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Parameters: effect of 𝑑

(d) 𝑑 = 1001 (𝛾 ≈ 10−11)
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1 Overview

2 Approach
Convex analysis
Moreau–Yosida regularization
Semismooth Newton method

3 Multi-bang penalty

4 Vector-valued multi-bang penalty
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Vector-valued multi-bang control

Discrete vector-valued controls 𝑢 : Ω → 𝑈 ⊂ ℝ𝑚

Example: optimal control of Bloch equation: Ω = [0, 𝑇], 𝑚 = 2

𝑑

𝑑𝑡
𝑀(𝑡) = 𝑀(𝑡) × 𝐵(𝑡), 𝑀(0) = 𝑀0

𝑀(𝑡) ∈ ℝ3 describes temporal evolution of spin ensemble

𝐵(𝑡) = (𝑢1(𝑡), 𝑢2(𝑡), 𝜔)𝑇 controlled time-dependent magnetic field

𝜔 resonance frequency (material parameter)

applications in magnetic resonance imaging, spectroscopy

control-to-state mapping 𝑆 : 𝑢 → 𝑀 bilinear ({ chain rule, Clarke)
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Vector-valued multi-bang: penalty

Here: admissible control set 𝑈 of 𝑑 radially distributed states, origin

𝑈 =

{( 0
0
)
,
(
𝜔0 cos 𝜃1
𝜔0 sin 𝜃1

)
, . . . ,

(
𝜔0 cos 𝜃𝑑
𝜔0 sin 𝜃𝑑

)}
fixed amplitude 𝜔0 > 0
phases 0 ≤ 𝜃1 < . . . < 𝜃𝑑 < 2𝜋

multi-bang penalty 𝑔 =
( 1

2 | · |
2
2 + 𝛿𝑈

)∗∗ convex envelope

𝑔∗(𝑞) =
((

1
2 | · |

2
2 + 𝛿𝑈

)∗∗)∗
(𝑞) =

(
1
2 | · |

2
2 + 𝛿𝑈

)∗
(𝑞)

=

{
0 ⟨𝑞, 𝑢𝑖⟩ ≤ 1

2𝜔
2
0 for all 1 ≤ 𝑖 ≤ 𝑑

⟨𝑞, 𝑢𝑖⟩ − 1
2𝜔

2
0

𝜃𝑖−1+𝜃𝑖
2 ≤ ∠𝑞 ≤ 𝜃𝑖+𝜃𝑖+1

2 , ⟨𝑞, 𝑢𝑖⟩ ≥ 1
2𝜔

2
0
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Vector-valued multi-bang: subdifferential

Fenchel conjugate

𝑔∗(𝑞) =
{

0 =: 𝑢0 𝑞 ∈ 𝑄0

⟨𝑞, 𝑢𝑖⟩ − 1
2𝜔

2
0 𝑞 ∈ 𝑄𝑖

Subdifferential

𝜕𝑔∗(𝑞) =
{
{𝑢𝑖} 𝑞 ∈ 𝑄𝑖 0 ≤ 𝑖 ≤ 𝑑

co {𝑢𝑖1 , . . . , 𝑢𝑖𝑘 } 𝑞 ∈ 𝑄𝑖1 ...𝑖𝑘 0 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑑
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Vector-valued multi-bang: subdifferential

Subdifferential

𝜕𝑔∗(𝑞) =
{
{𝑢𝑖} 𝑞 ∈ 𝑄𝑖 0 ≤ 𝑖 ≤ 𝑑

co {𝑢𝑖1 , . . . , 𝑢𝑖𝑘 } 𝑞 ∈ 𝑄𝑖1 ...𝑖𝑘 0 ≤ 𝑖1, . . . , 𝑖𝑘 ≤ 𝑑

Moreau–Yosida regularization

(𝜕𝑔∗)𝛾 (𝑞) =



𝑢𝑖 𝑞 ∈ 𝑄
𝛾
𝑖(

⟨𝑞,𝑢𝑖 ⟩
𝛾𝜔2

0
− 𝛼

2𝛾

)
𝑢𝑖 𝑞 ∈ 𝑄

𝛾
0,𝑖

𝑢𝑖+𝑢𝑖+1
2 + ⟨𝑞,𝑢𝑖−𝑢𝑖+1 ⟩ (𝑢𝑖−𝑢𝑖+1 )

𝛾 |𝑢𝑖−𝑢𝑖+1 |22
𝑞 ∈ 𝑄

𝛾
𝑖,𝑖+1

𝑞
𝛾 − 𝛼

𝛾

(
𝜔0

|𝑢𝑖+𝑢𝑖+1 |2

)2
(𝑢𝑖 + 𝑢𝑖+1) 𝑞 ∈ 𝑄

𝛾
0,𝑖,𝑖+1.
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Vector-valued multi-bang: subdifferential

𝑞2

𝑞1
𝑄0

𝑄1
𝑄2

𝑄3
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𝑄5

𝑄6

𝑄01

𝑄12

𝑄012
𝑄02

𝑄23

𝑄023

𝑄03

𝑄34
𝑄034

𝑄04

𝑄45

𝑄045
𝑄05

𝑄56

𝑄056

𝑄06

𝑄61
𝑄061

(a) subdomains for 𝜕𝑔∗

𝑞2

𝑞1
𝑄
𝛾
0

𝑄
𝛾
1

𝑄
𝛾
01

𝑄
𝛾
12

𝑄
𝛾
012

𝑄
𝛾
2

𝑄
𝛾
02

𝑄
𝛾
23

𝑄
𝛾
023

𝑄
𝛾
3 𝑄

𝛾
03

𝑄
𝛾
34

𝑄
𝛾
034

𝑄
𝛾
4

𝑄
𝛾
04

𝑄
𝛾
45

𝑄
𝛾
045

𝑄
𝛾
5

𝑄
𝛾
05

𝑄
𝛾
56

𝑄
𝛾
056

𝑄
𝛾
6

𝑄
𝛾
06

𝑄
𝛾
61

𝑄
𝛾
061

(b) subdomains for (𝜕𝑔∗)𝛾
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Vector-valued multi-bang: examples

goal: shift magnetization from 𝑀0 = (0, 0, 1)𝑇 at 𝑡 = 0
to 𝑀𝑑 = (1, 0, 0)𝑇 at 𝑡 = 𝑇

𝑑 = 3, 6 radially distributed admissible control states

𝑛 = 1, 4 isochromats with different resonance frequencies

1 shift all isochromats

2 shift only one isochromat

𝛼 = 10−1, 𝜔0 = 1

example motivated by [Dridi/Lapert/Salomon/Glaser/Sugny ’15]

matrix-free Krylov method for semismooth Newton step

discretization, adjoint from [Aigner/Clason/Rund/Stollberger ’16]
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Vector-valued multi-bang: examples
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(a) control 𝑢(𝑡)
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𝑀𝑑
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𝑀𝑦

𝑀
𝑧

(b) state 𝑀(𝑡)

Figure: 𝑛 = 1 isochromat, 𝑑 = 3 control states

Overview Nonsmooth optimization Multi-bang penalty Vector-valued multi-bang penalty 35 / 41



Vector-valued multi-bang: examples
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(a) control 𝑢(𝑡)
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𝑀𝑥
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𝑀
𝑧

(b) state 𝑀(𝑡)

Figure: 𝑛 = 1 isochromat, 𝑑 = 6 control states
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Vector-valued multi-bang: examples
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𝑀𝑥
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𝑀
𝑧

(b) state 𝑀(𝑡)

Figure: 𝑛 = 4 isochromats, same target
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Vector-valued multi-bang: examples
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(a) control 𝑢(𝑡)
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𝑀(𝑇 )

𝑀𝑥
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𝑀
𝑧

(b) state 𝑀(𝑡)

Figure: 𝐽 = 4 isochromats, different targets
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Vector-valued multi-bang: elasticity

Linear elasticity: 𝑆 : 𝑢 ↦→ 𝑦 solving
−2𝜇div 𝜖( 𝑦) − 𝜆 grad div 𝑦 = 𝑢 in Ω,

𝑦 = 0 on Γ,

(2𝜇𝜖( 𝑦) + 𝜆 div 𝑦)𝑛 = 0 on 𝜕Ω \ Γ

Concentric admissible set (without origin!)

𝑈 =

{(
1
1

)
,

(
1
−1

)
,

(
−1
1

)
,

(
−1
−1

)
,

(
2
2

)
,

(
2
−2

)
,

(
−2
2

)
,

(
−2
−2

)}
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Vector-valued multi-bang: elasticity
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Vector-valued multi-bang: elasticity

𝜋
3

𝜋

−𝜋
3

0
√

8

Figure: radial, 𝑑 = 3, 𝛼 = 10−3 (grey: prescribed, red: achieved deformation)
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Vector-valued multi-bang: elasticity
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Figure: radial, 𝑑 = 5, 𝛼 = 10−3 (grey: prescribed, red: achieved deformation)
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Vector-valued multi-bang: elasticity
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Figure: concentric, 𝛼 = 10−3 (grey: prescribed, red: achieved deformation)
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Vector-valued multi-bang: elasticity
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Figure: concentric, 𝛼 = 10−5 (grey: prescribed, red: achieved deformation)

Overview Nonsmooth optimization Multi-bang penalty Vector-valued multi-bang penalty 38 / 41



Vector-valued multi-bang: elasticity
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Figure: concentric, 𝛼 = 10−5 (grey: prescribed, red: achieved deformation)
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Vector-valued multi-bang: elasticity
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Figure: concentric, 𝛼 = 10−5 (grey: prescribed, red: achieved deformation)
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Vector-valued multi-bang: multimaterial transport

Multimaterial transport on graph (𝑉, 𝐸): 𝑆 graph divergence

𝑆𝑢(𝑥) =
∑︁

𝑒∈𝐸 to 𝑥

𝑢(𝑒) −
∑︁

𝑒∈𝐸 from 𝑥

𝑢(𝑒)

{ tracking term penalizes material loss

𝑈 =
{
𝑢 ∈ ℝ𝑚

��𝑢𝑖 ∈ {0, 𝑚𝑖} or 𝑢𝑖 ∈ {0,−𝑚𝑖} for 𝑖 = 1, . . . , 𝑚
}

{ transport of all masses 𝑚𝑖 (= 1) in same direction (same sign)

Here: multibang penalty ≃ transport costs

𝑔(𝑢) = |𝑢|2 + 𝛿𝑈
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Vector-valued multi-bang: multimaterial transport

Here: multibang penalty ≃ transport costs

𝑔(𝑢) = |𝑢|2 + 𝛿𝑈

{ algorithmic computation of proximal mapping:

1 enumerate all faces of

epi 𝑔∗ = {(𝑞, 𝑡) ∈ ℝ𝑚+1 : 𝑡 ≥ ⟨𝑢̄𝑖 , 𝑞⟩ − 𝛼 |𝑢̄𝑖 |2 for 𝑖 ∈ 𝐼}

(linear program, precompute!)

2 for each face, precompute linear system for (Id+𝛾𝜕𝑔∗)−1

3 for given 𝑞, evaluate linear system for each face and pick correct face
(inequalities)
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Vector-valued multi-bang: multimaterial transport
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Conclusion

Discrete controls:

can be promoted by convex penalty

linear complexity in number of parameter values

{ efficient numerical solution (superlinear convergence)

applicable to vector-valued problems

Outlook:

nonlinear inverse problems: seismic imaging

combination with total variation regularization

conditional gradient methods?

other discrete–continuous problems: switching, state diagrams

Papers, Code: https://imsc.uni-grat.at/clason/publications

SIREV paper: https://arxiv.org/abs/2108.10077

Textbook: https://arxiv.org/abs/2001.00216
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