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Crowd motion [5]*

Let us consider a model of crowd motion in emergency evacuations:

[¢]
[¢] [¢]
exit (¢} o exit
I
[¢]
[¢]

In this model:
» Consider N persons identified as nonoverlapping rigid disks in R2.

» Each individual has a spontaneous velocity that he would like to
have in absence of other people.

1[5] B. Maury and J. Venel: A discrete contact model for crowd motion. ESAIM Math. Model. Numer.
Anal. (2011)
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The vector of positions ¢ = (g1, . .,qn) € RV has to belong to the set
Q:={qeR* |Vi#j, Di(q) >0},

where D;;(q) := ||¢; — gj|| — 2r is the distance between the disk ¢ and j.
If the global spontaneous velocity of the crowd is denoted by

V(tv q) = (‘/l(t7q1)7 sy VN(t/ qN)) € R2N’

the crowd motion can be described by the following projected differential equation:

dg .
E = pro.]'TQ(q) (V(tv Q))v
where
Talg) = {v € R*N | Vi < j, Dyj(q) = 0= VDy(q)-v >0},

is the set of admissible velocities.
The last projected differential equation is equivalent to:
dgq

7 € Nala) +V(ta)
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Moreau's sweeping process

In the previous example, the motion can be described by the so-called
sweeeping processes:

Y(t) € =New (V1) + f(t,()  ae t€[0,T],
7(0) = z € C(0),
where C(t) is a closed set for all t € [0,7] and f: [0,7] x R? — R%.

» The sweeping process was introduced by J.-J. Moreau in 19712 to
model an elastoplastic mechanical system.

» It appears in several fields such as nonsmooth electrical circuits,
nonsmooth mechanics, crowd motion, hysteresis phenomena, etc.

2
[6] J.-J. Moreau: Rafle par un convexe variable . Sém. Anal. Convexe Montpellieri(1971), Exposé-15.
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Interpretation of the sweeping process

Consider a large ring that contains a small ball. The ring will start to

move at time ¢t = 0.
Depending on the motion of the ring, the ball will just stay where it is (in
case it is not hit by the ring), or otherwise it is swept by the ring.

v
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Interpretation of the sweeping process

Mathematically,

1(t) € =New (1) ae. t €0, 7],
7(0) =z € C(0),

where
» ~(t) is the position of the ball at time ¢.
> C(t) is the moving set (the ring and its interior).

» Ng) (7(t)) is some appropriate outward normal cone of C(t) at
~(t) € C(t).

In the general setting, the set C(t) is allowed to change its shape while is
moving.
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First basic existence result

Theorem (Moreau 1971 [6, 7])

If the sets (C(t))i>0 are nonempty, closed and convex with

sup |distoq)(z) — distes) (z)| < ket — s,
z€R4

for some kc > 0. Then there exists a unique Lipschitz solution to

{f'y(t) € ~Now) (7(t))  ae t€[0,T).

~(0) = z € C(0). (SP)

Moreover,

A(@#)|| € ke for a.e. t €[0,T).

[6] J.J. Moreau: Rafle par un convexe variable I. Sém. Anal. Convexe Montpellier (1971), Exposé 15.

[7] J.J. Moreau: Rafle par un convexe variable Il. Sém. Anal. Convexe Montpellier(1972), Exposé-3.
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Several extensions are possible.

Let us fix ) # C C R%.

» Assume that C'is closed and let > 0. We say that C'is
r-prox-regular if

(o€ Ot eN(@)(¥y € C) (y=o) < 5 llo= ol

» One can show (see [2]) that if C is r-prox-regular then, for every
€ C, ={y € R|d(y,C) < r}, the projection proj. () of = onto
C' is unique.

[2] G. Colombo and L. Thibault : Prox-regular sets and applications. Handbook of Nonconvex Analysis and
Applications (2010).
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> Let f:[0,7] x R — R? and suppose that there exists
k1 € LY([0,T];R) such that

I f(t,z)—f(t,z")| < ki(t)||z—2'|| for a.e. t € [0,T], for all z, 2’ € R%

Moreover, suppose that there exists a function r2 € L'([0,T]; R)
such that

[ £(t,z)|| < ka(t)(1+||z|) forae. t€[0,T], for all z € R%

» Let C: [0,7] = R? be such that, for every t € [0,T], ) # C(t) is
closed and r-prox-regular. Moreover, assume the existence of
ke > 0 such that

sup |distc(t) (z) — distc(s)(x)‘ < kclt—s|, foralls,te]l0,T].
z€RI



Optimal control of sweeping processes: theoretical framework and numerical approximation

L Introduction

Theorem (Edmond-Thibault (2005))

Under the previous assumption the perturbed sweeping process equation

{1(1‘) € f(t,7(1) = New (V1) a.e. t€[0,T],

+(0) = = € C(0) @

admits a unique Lipschitz solution ~.

Remark

» One can obtain this result as a consequence of a fixed point
argument involving the non perturbed sweeping process extended to
the case where C(t) is r-prox-regular.

» If, in addition, f jointly continuous, one can also approximate the
solution by the following catching-up approximation:

’Y/?+1 = projC(ti}'Jrl) (r}/lrvl + Atkf(tk,’}/;:)) )
vy =z € C(0).
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Finite horizon optimal control

Let 7> 0 and = € R, we deal with the following optimal control
problem

in / C(t (1), () dt + g(4(T))
3(t) € F(t (1), alt)) — Now((t) forae. t € (0,T),
7(0) ==z, with z € C(0)

ae A

» Here A= {a:[0,7] — A, measurable} denotes the set of
admissible controls, with A C R™ being a nonempty compact set.

» The study of optimal control problems of the sweeping process have
already been addressed, in different frameworks in [1, 4]

[1] G. Colombo and M. Palladino: The minimum time function for the controlled Moreau’s sweeping process

(2016).
[4] C. Hermosilla, M. Palladino, and E. Vilches: Hamilton—Jacobi-Bellman Approach for Optimal Control

Problems of Sweeping Processes (2024).
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Assumptions
1. f:[0,7] x RY x R™ — R is continuous and satisfies
» There exists k5 > 0 such that for all t € [0,7] and a € A
£t 2, a) = f(t,y,a)ll < wglle =yl forall 2,y € RY.

2. £:[0,T] x R x R™ — R and g : R — R are continuous and
satisfies

» There exists x¢ > 0 such that for all ¢ € [0,7] and a € A
[0(t,x,a) — L(t,y,a)| < kel|lz —y| forall z,y € RY.
» There exists 3, > 0 and k, > 0 such that

9(z) = 9(y)| < rglle —y| forall z,y € C(T).
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The value function

Let us define the value function v: gr(C) C [0,7] x R — R by

T
v(t,z) = inf {/t £(s,7(8),a(s))ds + g(~(T)) ‘ (a,7) is admissible} .

» (Dynamic programming principle) For all (¢,z) € gr(C) and
T € (t,T)

v(t,x) = inf {/tT £(s,7(8),a(s))ds 4+ v(r,v(7))

(a,7y) is admissible} .

» One can show that v is locally Lipschitz.
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The HJB equation

> For every (t,x) € gr(C) and p € RY, let us define
oc(t,z,p) =sup {(p,q) | ¢ € Now (@), llg|l < re+ Br(1+ |lz])},
where B¢ > 0 is such that
It z,a)]] < Br(1+|z|]) forall (¢,z) € gr(C) and a € A.
> We also set
H(t,z,p) = sup{—(f(t,z,a),p) — L(t,z,a) { a€ A}

for all (t,x) € gr(C) and p € R%.
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Let V: gr(C) — R be continuous. We say that
> V is a viscosity subsolution to HJB if for any (t,z) € gr(C) and ¢ € C*(gr(C)) such
that V — ¢ has a local maximum at (¢, ) we have
if z € int(C(t)),

—0yp(t,x) + H(t, 2, Vad(t, ) <0
if 2 € 9C(t)

—Op(t, ) + H(t, 2,V o(t,x)) — oc(t,x, —Vzd(t,z)) <0

> V is a viscosity supersolution to HIB if for any (¢,z) € gr(C) and ¢ € C*(gr(C)) such
that V' — ¢ has a local minimum at (¢,z) we have
if € int(C(t)),

—Op(t,x) + H(t,z,Vyo(t,x)) >0
if z € 9C(1).

=0 p(t,x) + H(t,x, Vd(t, ) + oc(t, x, Vad(t,z)) > 0

» V is a viscosity solution to HJB if it is a viscosity sub- and supersolution to HJB.

Theorem
The value function is the unique viscosity solution to the HJB equation.
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Numerical scheme

> Let Az €]0,1[, At = T/Na¢, define Za; = {0,..., Naz} and set
Ixs =Zae \{Nat}-

> We define a straight triangulation TX . composed of elements T,
each of which is a straight d- S|mEIex Whose vertices coincide with
those of some curved d-simplex T € Tk
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> Let us define the polyhedral domain defined by CX, = UTeTz T.

> We assume that for any T € T, and € T we have
projr(x) € argmin,ccx |lz—2'|| and we set pex () = projr(x).
We will also assume that

‘x - pcgz(l’)‘ < Cy(Ax)* forall z € Ck,.
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Interpolation function
For any k € Za; and any function ¢ : GK . — R we define the
interpolation

Z Bf (pex_(x))p(xf)  for all = € C(ty).

€Ik
A fully discrete scheme
Given k € T},, x € C(tx), a € A we define

yp(z,a) = x + Atf(tg, z,a), and yp(z,a) = projc(tkﬂ)(yk(x,a))

yi(xk, a) = x+ At f(ty, 21, a)
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A semi-Lagrangian scheme

> For k € I}, and z} € Gk ., consider the fully discrete SL scheme

Vi(z;) = infaeca {Atf(tk, xi,a) + Ik+1[Vk+1](gk($i, CL))}
Via, (z:) = g(x;) forall z; € G2

» Probabilistic interpretation of the scheme. Consider the set of
policies ITa; = {(Trk)kejgt | Tk : QZI — A} Given z; € QZI and
m € s, we can define a Markov chain {X;””T |j=Fk,...,Nat}
with transition probabilities

P(X"T = 1) = 1

) k
P(Xs{izlm — x;_n+1 \Xf,{xl i _ ) = 5}n+1 <pcxm+1(ym(ajlm,7rm(a?f1)))) .
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» Then for every k € T}, and z; € C(t;) we have

Nat—1

. k,x;,m k,x;,m k,x;,m
Vk(xl) :WéllllfAtE At Z g(thJ aﬂ-j(Xj )) +g(XNA, )
j=k

Given the sequences (At,,), and (Ax,), we set A,, = (At,, Ax,).

Theorem (Uniform convergence over compact sets)

Let K C gr(C) be compact. Assume that A,, — (0,0) when n — oo
with (Az,)%/At,, — 0. Then

Sup{’Vk(xf) —v(tk,xf)‘ | k € Ias,, et e Gh, , (traf) e K} — 0.

n—oo
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A numerical example

> We take T'=1, N = 40, Az = 0.05, {(t,z,a) = ||a|?/2,
g(z) = ||z — (0,0.5)||?/2, and f(t,x,a) = a.

1.00 1.00 { 1.00 1.00 {
0.75 - 0759 0.75 0.75 - O
0.50 - . 0.50 4 0.50 O 0.50 - 1=
0.25 - O 025 0.25 0.25 -
0.00 4! ‘ 1| o004} ‘ 1| 0004 ‘ 1| 0.004; ‘ ‘
0.0 0.5 10 0.0 0.5 10 0.0 0.5 10 0.0 0.5 1.0
t=0.000 t=0.150 t=0.300 t=0.450
1.00 1.00 { 1.00 1.00
0.75 O 075 0.75 0.75
0.50 - ., 0.50 Q 0.50 - 0.50 -
0.25 025 0.25 0.25
0.00 ] ‘ 1| o004, ‘ 1| 0004} ‘ | 0.001; > ‘
0.0 0.5 10 0.0 05 10 0.0 0.5 Lo 0.0 05 10
t=0.550 t=0.700 t=0.850 t=1.000
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